生物网络通常用于生物医学和健康保健领域,以有效地模拟复杂的生物系统与与生物实体联系的相互作用的结构。但是,由于它们具有高维度和低样本量的特征,直接在生物网络上应用深度学习模型通常会面临严重的过度拟合。在这项工作中,我们提出了R-Mixup,这是一种基于混合的数据增强技术,该技术适合具有优化训练效率的生物网络的邻接矩阵的符号正定(SPD)属性。R-Mixup中的相互关系过程利用了Riemannian歧管的对数 - 欧几里得距离指标,从而有效地解决了香草混合物的肿胀效果和任意错误的标签问题。我们通过五个现实世界的生物网络数据集在回归和分类任务上演示了R-Mixup的有效性。此外,我们得出了一个普遍忽略的必要条件,用于识别生物网络的SPD矩阵,并密切研究其对模型性能的影响。代码实现可以在附录E中找到。
摘要:目前,脑电图 (EEG) 解码任务中的最佳性能通常通过深度学习 (DL) 或基于黎曼几何的解码器 (RBD) 实现。最近,人们对深度黎曼网络 (DRN) 的兴趣日益浓厚,它可能结合了前两类方法的优势。然而,仍然有一系列主题需要额外的洞察力,为 DRN 在 EEG 中的更广泛应用铺平道路。这些包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能尚未探索。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的 EEG 解码相关。我们的研究旨在通过分析具有广泛超参数的 EEG DRN,为这些主题领域奠定基础。在五个公共 EEG 数据集上测试了网络,并与最先进的 ConvNets 进行了比较。在这里,我们提出了端到端 EEG SPDNet(EE(G)-SPDNet),并且我们表明这种宽的端到端 DRN 可以胜过 ConvNets,并且在这样做时使用生理上合理的频率区域。我们还表明,端到端方法比针对 EEG 的经典 alpha、beta 和 gamma 频带的传统带通滤波器学习更复杂的滤波器,并且性能可以从特定于通道的滤波方法中受益。此外,架构分析揭示了进一步改进的地方,因为整个网络可能未充分利用黎曼特定信息。因此,我们的研究展示了如何设计和训练 DRN 以从原始 EEG 推断与任务相关的信息,而无需手工制作的滤波器组,并强调了端到端 DRN(如 EE(G)-SPDNet)用于高性能 EEG 解码的潜力。
在这项工作中,我们考虑了发布驻留在黎曼流形上的差分隐私统计摘要的问题。我们提出了拉普拉斯或 K 范数机制的扩展,该机制利用了流形上的固有距离和体积。我们还详细考虑了摘要是驻留在流形上的数据的 Fréchet 平均值的特定情况。我们证明了我们的机制是速率最优的,并且仅取决于流形的维度,而不取决于任何环境空间的维度,同时还展示了忽略流形结构如何降低净化摘要的效用。我们用两个在统计学中特别有趣的例子来说明我们的框架:对称正定矩阵的空间,用于协方差矩阵,以及球面,可用作离散分布建模的空间。
摘要 — 使用迁移学习来训练脑机接口 (BCI) 解码算法有助于减少校准时间、提高准确性、降低过度拟合风险并允许应用需要大量数据的机器学习方法,例如深度神经网络。在本文中,我们提出了一种受黎曼几何最新进展启发的迁移学习方法。该方法通过 Procrustes 分析在源和目标数据集的切线空间中对齐向量。我们将该方法应用于公开的 P300-BCI 数据库。我们表明,使用我们的方法可以重用来自其他受试者的数据来传输信息。与最先进技术相比,我们获得的分类准确性表明使用迁移学习方法可以清晰地传输信息。
生物网络通常用于生物医学和医疗保健领域,以有效地模拟复杂生物系统的结构以及连接生物实体的相互作用。然而,由于其高维和低样本量的特点,直接将深度学习模型应用于生物网络通常会面临严重的过拟合。在本文中,我们提出了一种基于 Mixup 的数据增强技术 R-Mixup,它适合生物网络邻接矩阵的对称正定 (SPD) 性质,并优化了训练效率。R-Mixup 中的插值过程利用了黎曼流形中的对数欧几里德距离度量,有效地解决了 vanilla Mixup 的膨胀效应和任意错误的标签问题。我们用五个真实的生物网络数据集在回归和分类任务上证明了 R-Mixup 的有效性。此外,我们推导出一个常被忽视的识别生物网络 SPD 矩阵的必要条件,并实证研究了其对模型性能的影响。代码实现可以在附录E中找到。
摘要— 目标:会话间非平稳性是当前脑机接口 (BCI) 面临的主要挑战,会影响系统性能。在本文中,我们研究了使用通道选择来减少黎曼 BCI 分类器的会话间非平稳性。我们使用协方差矩阵的黎曼几何框架,因为它具有鲁棒性和良好的性能。当前的黎曼通道选择方法不考虑会话间非平稳性,通常在单个会话中进行测试。在这里,我们提出了一种新的通道选择方法,该方法专门考虑非平稳性影响,并在多会话 BCI 数据集上进行评估。方法:我们使用顺序浮动后向选择搜索策略删除最不重要的通道。我们的贡献包括:1) 在黎曼框架中通过不同标准量化多类问题中非平稳性对大脑活动的影响;2) 一种预测 BCI 性能是否可以通过通道选择提高的方法。结果:我们在三个基于多会话和多类心理任务 (MT) 的 BCI 数据集上评估了所提出的方法。与使用所有通道相比,它们可以显著提高受会话间非平稳性影响的数据集的性能,并且在所有数据集上都明显优于最先进的黎曼通道选择方法,尤其是在选择小通道集大小时。结论:通过通道选择降低非平稳性可以显著提高黎曼 BCI 分类准确性。意义:我们提出的通道选择方法有助于使黎曼 BCI 分类器对会话间非平稳性更具鲁棒性。索引词——脑机接口、EEG、黎曼流形、通道选择、非平稳性。
为了进一步验证,我们使用了额外的公开数据集。共有 31 名健康个体(13 名男性,年龄 19-41 岁)参与了这项研究。研究人员以随机顺序向参与者播放了六种选定食品的三段相同视频广告(即动态内容)。每个视频广告的长度在 25 到 46 秒之间。视频播放完成后,使用二元选择试验得出产品排名。在这里,分类任务归结为对参与者在排名方面的第一个和最后一个选择的辨别,这很容易与决策过程联系起来,从而与购买(或不购买)产品的意图联系起来。最后,记录脑电图活动,并进行抽样
量子技术中的许多理论问题可以被提出并作为约束优化问题来解决。最常见的量子机械约束,例如,等距和单位矩阵的正交性,量子通道的CPTP特性以及密度矩阵的条件,可以看作是商或嵌入的riemannian歧管。这允许使用Riemannian优化技术来解决量子力学约束优化问题。在当前的工作中,我们介绍了Qgopt,这是量子技术中约束优化的库。QGOPT依赖于量子力学约束的基础riemannian结构,并允许在保留量子机械约束的同时应用基于标准梯度的优化方法。此外,QGOPT写在张量之上,这使自动分化能够计算优化的必要梯度。我们显示了两个申请示例:量子门分解和量子断层扫描。
摘要 - 我们提出了一种用于学习脑电图(EEG)的新型深神经结构。为了学习空间插图,我们的模型首先获得了Riemannian-Nian歧管上空间协方差矩阵(SCM)的riemannian平均值和距离。然后,我们通过切线空间学习将空间信息投射到欧几里得空间上。随后,使用两个完全连接的层来学习空间信息嵌入。此外,我们提出的方法通过使用具有软注意机制的深长短期记忆网络从欧几里得空间中的EEG信号中提取的差分熵和对数功率谱密度特征来学习时间信息。为了结合空间和时间信息,我们使用有效的融合策略,该策略学习了用于嵌入决策特定特征的注意力权重。我们在三个流行的EEG相关任务中评估了四个公共数据集上的拟议框架,特别是情绪识别,警惕性估计和运动图像分类,其中包含各种类型的任务,例如二进制分类,多类分类和回归。我们提出的体系结构在种子视频上的其他方法优于其他方法,并在其他三个数据集(Seed,BCI-IV 2A和BCI-IV 2B)上接近最先进的方法,显示了我们在脑电图表示学习中框架的鲁棒性。我们论文的源代码可在https://github.com/guangyizhangbci/eeeg riemannian上公开获得。
摘要 目的。迄今为止,在基于 EEG 的脑机接口中,黎曼解码方法与深度卷积神经网络的全面比较仍未在已发表的研究中出现。我们使用 MOABB(所有 BCI 基准之母)来解决这一研究空白,将新型卷积神经网络与最先进的黎曼方法进行比较,这些方法涉及广泛的 EEG 数据集,包括运动想象、P300 和稳态视觉诱发电位范式。方法。我们使用 MOABB 处理管道系统地评估了卷积神经网络(特别是 EEGNet、浅层 ConvNet 和深度 ConvNet)与成熟的黎曼解码方法的性能。该评估包括会话内、跨会话和跨受试者方法,以提供模型有效性的实用分析,并找到在不同实验设置中表现良好的整体解决方案。主要结果。我们发现在会话内、跨会话和跨受试者分析中,卷积神经网络和黎曼方法之间的解码性能没有显着差异。意义。结果表明,在使用传统的脑机接口范式时,在许多实验环境中,CNN 和黎曼方法之间的选择可能不会对解码性能产生重大影响。这些发现为研究人员提供了灵活性,可以根据诸如易于实施、计算效率或个人偏好等因素选择解码方法。