用于脑电图解码的深度黎曼网络
机构名称:
¥ 4.0

摘要:目前,脑电图 (EEG) 解码任务中的最佳性能通常通过深度学习 (DL) 或基于黎曼几何的解码器 (RBD) 实现。最近,人们对深度黎曼网络 (DRN) 的兴趣日益浓厚,它可能结合了前两类方法的优势。然而,仍然有一系列主题需要额外的洞察力,为 DRN 在 EEG 中的更广泛应用铺平道路。这些包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能尚未探索。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的 EEG 解码相关。我们的研究旨在通过分析具有广泛超参数的 EEG DRN,为这些主题领域奠定基础。在五个公共 EEG 数据集上测试了网络,并与最先进的 ConvNets 进行了比较。在这里,我们提出了端到端 EEG SPDNet(EE(G)-SPDNet),并且我们表明这种宽的端到端 DRN 可以胜过 ConvNets,并且在这样做时使用生理上合理的频率区域。我们还表明,端到端方法比针对 EEG 的经典 alpha、beta 和 gamma 频带的传统带通滤波器学习更复杂的滤波器,并且性能可以从特定于通道的滤波方法中受益。此外,架构分析揭示了进一步改进的地方,因为整个网络可能未充分利用黎曼特定信息。因此,我们的研究展示了如何设计和训练 DRN 以从原始 EEG 推断与任务相关的信息,而无需手工制作的滤波器组,并强调了端到端 DRN(如 EE(G)-SPDNet)用于高性能 EEG 解码的潜力。

用于脑电图解码的深度黎曼网络

用于脑电图解码的深度黎曼网络PDF文件第1页

用于脑电图解码的深度黎曼网络PDF文件第2页

用于脑电图解码的深度黎曼网络PDF文件第3页

用于脑电图解码的深度黎曼网络PDF文件第4页

用于脑电图解码的深度黎曼网络PDF文件第5页

相关文件推荐