co1:了解深度学习的基本概念。(L2)CO2:了解神经网络的基础知识,如何训练它们以及培训中的挑战。(L2)CO3:了解CNN,RNN,序列模型(L3)CO4等各种深度学习体系结构:讨论深度学习的实际应用及其适合行业的位置(L4)CO5:分析现实世界中的问题,并建议使用深度学习(L4)
Manisha Mali博士,Shreyas Thombal,Akshay Gangurde,Sunil Sonu,Jahnvi More More Computer,Vishwakarma信息技术研究所,印度浦那 - 印度浦那 - 摘要 - 语音增强,语音处理的重要组成部分,言语处理的重要组成部分,减少噪音,降解,降解,降解,降解和扭曲,以提高综合性和明显的声音符号。 尽管他们已经为基础设定了基础,但常规方法(例如Wiener滤波和光谱减法)经常在复杂和刺激性的设置中受到限制。 机器学习的最新发展,尤其是深度学习,已通过提供更具弹性,适应能力的模型来完全改变了这一部门,这些模型可以处理广泛的噪音情况。 本综述研究着眼于改善语音的不同基于机器学习的方法,特别着重于包括经常性和卷积神经网络(RNN)在内的神经网络。 本研究涵盖了他们的结构,优化策略和优于常规方法的卓越性能。 它还解决了资源有限,模型复杂性和实时处理的设备上计算效率的困难。 这项研究还提出了将未来的探究范围进行整合,用于整合强化学习,无监督的学习和混合模型,以在苛刻的环境中提高绩效。 关键字 - 经常性神经网络(RNN),深度学习,降低噪音,实时处理,资源约束设备1。 语音增强引起了很多关注,因为它在语音激活的设备,助听器,电信等中的应用等。Manisha Mali博士,Shreyas Thombal,Akshay Gangurde,Sunil Sonu,Jahnvi More More Computer,Vishwakarma信息技术研究所,印度浦那 - 印度浦那 - 摘要 - 语音增强,语音处理的重要组成部分,言语处理的重要组成部分,减少噪音,降解,降解,降解,降解和扭曲,以提高综合性和明显的声音符号。尽管他们已经为基础设定了基础,但常规方法(例如Wiener滤波和光谱减法)经常在复杂和刺激性的设置中受到限制。机器学习的最新发展,尤其是深度学习,已通过提供更具弹性,适应能力的模型来完全改变了这一部门,这些模型可以处理广泛的噪音情况。本综述研究着眼于改善语音的不同基于机器学习的方法,特别着重于包括经常性和卷积神经网络(RNN)在内的神经网络。本研究涵盖了他们的结构,优化策略和优于常规方法的卓越性能。它还解决了资源有限,模型复杂性和实时处理的设备上计算效率的困难。这项研究还提出了将未来的探究范围进行整合,用于整合强化学习,无监督的学习和混合模型,以在苛刻的环境中提高绩效。关键字 - 经常性神经网络(RNN),深度学习,降低噪音,实时处理,资源约束设备1。语音增强引起了很多关注,因为它在语音激活的设备,助听器,电信等中的应用等。引言言语增强是通过人工智能的快速增长,尤其是机器学习而实现革命性进步的众多学科之一。其目标是在大声情况下提高语音信号的质量和清晰度。统计模型和信号处理技术是常规语音增强方法的基础[1]。但是,随着机器学习的发展,尤其是深度学习和复发性神经网络(RNN),语音增强的完成方式发生了巨大变化。由于机器学习模型,尤其是RNN可以在整个时间上保留上下文,因此它们尤其擅长处理顺序输入,例如
运动皮层 (MC) 如何在动态环境中从复杂的肌肉骨骼系统产生有目的且可推广的运动?为了阐明潜在的神经动力学,我们使用目标驱动的方法来对 MC 进行建模,将其目标视为控制器,通过期望状态驱动肌肉骨骼系统以实现运动。具体来说,我们将 MC 制定为循环神经网络 (RNN) 控制器,该控制器产生肌肉命令,同时接收来自生物学上准确的肌肉骨骼模型的感觉反馈。鉴于在高级物理模拟引擎中实现的这种实时模拟反馈,我们使用深度强化学习来训练 RNN,以在指定的神经和肌肉骨骼约束下实现所需的运动。训练模型的活动可以准确解码实验记录的神经群体动态和单个单元 MC 活动,同时很好地推广到与训练明显不同的测试条件。同时进行目标和数据驱动的建模,其中我们使用记录的神经活动作为 MC 的观察状态,进一步增强了直接和可推广的单个单元解码。最后,我们表明该框架阐明了神经动力学如何实现灵活控制运动的计算原理,并使该框架易于用于未来的实验。
本文提出了一种基于新型脑磁图 (MEG) 数据集 CiNet 的新型多通道情绪分类方法。本文属于脑机接口 (BCI) 研究领域,因为它使用大脑活动数据来识别人类情绪。它应该是一个有价值的贡献和对比,因为大多数 BCI 研究使用脑电图 (EEG) 数据,主要来自 DEAP 数据集。使用卷积神经网络 (CNN) 和循环神经网络 (RNN) 的组合,系统将分析高保真数据,以尝试识别受试者的情绪状态。CNN 对空间信息进行编码,而 RNN 跟踪随时间的变化。每个部分都单独评估,也结合评估,以确定每个分析方面的贡献。这些模型变体在原始 MEG 信号和从信号中提取的功率谱密度 (PSD) 上进行了评估。实验结果表明,最佳模型是在原始信号数据上训练的 CNN+RNN 组合,在效价/唤醒分类任务上实现了 56.5% 的平均准确率。
摘要 自适应门控在通过经典循环神经网络 (RNN) 进行时间数据处理中起着关键作用,因为它有助于保留预测未来所需的过去信息,从而提供一种保持时间扭曲变换不变性的机制。本文以量子 RNN (QRNN)(一种具有量子记忆的动态模型)为基础,介绍了一类新型的时间数据处理量子模型,该模型保持了 (经典) 输入输出序列的时间扭曲变换的不变性。该模型称为时间扭曲不变 QRNN (TWI-QRNN),它在 QRNN 中增强了一种量子-经典自适应门控机制,该机制通过经典循环模型选择是否在每个时间步骤中根据输入序列的过去样本应用参数化酉变换。TWI-QRNN 模型类源自第一原理,其成功实现时间扭曲变换的能力已在具有经典或量子动力学的示例上通过实验证明。
课程描述:机器学习和深度学习的基础;深度神经网络(DNN);卷积神经网络(CNN);循环神经网络(RNN);AI加速器细节;AI加速器中的节能训练和推理;受大脑启发的神经形态计算简介;脉冲时间相关可塑性(STDP)和学习规则;脉冲神经网络(SNN)在硬件中的模拟和实现。
数字时代为金融机构提供了大量数据。审议的问题在利用该数据的全部潜力方面提出了挑战。生成合成数据是允许对本数据中包含的作用和趋势分析而不会损害隐私的最有希望的解决方案之一。尽管生成合成数据的初始方法是基本的,但新兴的生成模型已经阐明了可能性。但是,为独特数据集生成综合数据,例如银行交易序列,仍然具有挑战性。这些序列表现出由各种客户交易行为驱动的复杂能力,将它们与其他数据类型中更可预测的模式区分开来。我们提出了Bankgan,这是一种专门为合成的银行交易序列而设计的有条件的表格GAN架构,该序列表现出非均匀的日期模式。我们表明,Bankgan在与真实数据相似的相似之处方面优于基于经常性的神经网络(RNN)模型。此外,它在复制周期性交易的特征方面表现出色,超过了RNN和基于变压器的模型。Bankgan通过在不损害数据质量的情况下生成隐私的合成数据来分歧自己,这与现有模型形成了鲜明的对比,在该模型中添加隐私保证保证通常会降低性能。
摘要 — 可靠的婴儿哭声识别在婴儿护理和监护中起着至关重要的作用,但现实环境由于背景噪音对系统准确性构成了挑战。本研究提出了一种用于在不同噪音条件下识别婴儿哭声的新型 CNN 架构,该架构具有三个卷积层、一个最大池化层和 0.5 丢失集,并将其性能与标准 RNN 模型进行了比较。这些模型以 64 的批大小训练了 100 个时期,并在干净和嘈杂的环境中进行了评估。为了模拟真实场景,将录音转换成音频信号并受到不同程度的背景噪音的影响,特别是在不同的信噪比 (SNR) 下。结果表明,两种模型在无噪音条件下都实现了高精度 (>89%)。然而,在 10dB 噪音下,提出的 CNN 比 RNN 保持了更高的精度 (93%) 和总体准确率 (91%),证明了其在婴儿哭声识别方面的卓越抗噪性。这种改进归功于 CNN 能够捕捉音频信号中的空间特征,这使其不易受到噪音干扰。这些发现有助于开发更可靠、更强大的婴儿哭声识别系统。
认知负荷是飞行员在对飞机操控信息认知过程中产生的,与飞行安全息息相关。认知负荷是飞行员在完成任务过程中产生的生理和心理需求,因此研究在复杂的人-机-环境相互作用下飞行员认知负荷的动态识别具有重要意义。本文设计了机场交通航线飞行模拟试验,获取飞行员的心电生理和NASA-TLX心理数据,分别对其进行小波变换预处理和数理统计分析,并利用Pearson相关分析法对预处理后的心理生理数据进行特征指标选取。基于心理生理特征指标,结合RNN和LSTM构建飞行员认知负荷识别模型。与RNN神经网络、支持向量机等其他方法建立的认知负荷识别模型相比,本研究结果更加准确。本研究可为预防和减少飞行任务中认知负荷引起的人为失误提供有益参考,有望实现飞机驾驶舱的智能控制,改善飞行操纵行为,保障飞行安全。