将多种独立的信号处理策略结合在单个设备中的人工突触是实现类脑计算中高密度集成、能源效率和快速数据处理的关键因素。通过控制功能复杂性,在突触装置中使用由多种材料组成的混合物作为活性成分代表了在突触回路中编码短期增强 (STP) 和长期增强 (LTP) 的有效途径。为了应对这一巨大挑战,本文开发了一种新型 Janus 2D 材料,通过在 2D 二硫化钼 (MoS 2 ) 的两个表面上不对称地涂覆电化学可切换的二茂铁 (Fc)/二茂铁 (Fc + ) 氧化还原对和光响应的光致变色偶氮苯 (Azo) 来制备。通过改变电化学刺激的强度,可以控制 STP 和 LTP 之间的转变,从而触发 MoS 2 上 Fc/Fc + 对的电化学掺杂或控制此类氧化还原物质在 MoS 2 上的吸附/解吸过程。此外,通过激活偶氮苯化学吸附分子的光异构化并因此调节 2D 半导体的偶极子诱导掺杂,可以记录较低强度的 LTP。值得注意的是,电化学和光学刺激的相互作用使得构建人工突触成为可能,其中 LTP 可以提升到 4 位(16 个记忆状态),同时用作 STP。
本新闻通讯提供的信息通常来自媒体报告,电子媒体,研究网站和其他媒体。它还包括所进行的访谈,分析,我们的研究团队表达的观点的信息。投资者不应该仅依靠本出版物中包含的信息,必须根据其特定目标和财务状况做出自己的投资决定,并使用他们认为必要的独立顾问。本文所提供的材料和信息不是也不应将其解释为购买或出售本新闻通讯中任何证券的建议。sihl可能会或可能不会在本新闻通讯中指定的任何证券中担任其业务的一部分。过去的表现不一定表明未来的表现。SIHL不能确保本新闻通讯中报告信息的准确性和正确性。
Kuber Chauhan kuberchauhan@rathi.com 公司简介 Stallion India Fluorochemicals 成立于 2002 年,总部位于孟买,从事制冷剂、工业气体及相关产品的销售业务。其主要业务包括制冷剂和工业气体的减量、混合和加工,以及预填充罐和小型气瓶/容器的销售。该公司在 Khalapur(马哈拉施特拉邦)、Ghiloth(拉贾斯坦邦)、Manesar(哈里亚纳邦)和 Panvel(马哈拉施特拉邦)拥有四家工厂。这些工厂均经过设计和配备,可在受控环境中储存气体,确保符合安全标准。这些气体可用于各种行业/领域,如空调和冰箱、消防、半导体制造、汽车制造、制药和医疗、玻璃瓶制造、气雾剂和喷雾泡沫。该公司提供各种产品,使公司在行业中脱颖而出。通过利用对客户行业的了解以及在气体和工程方面的技能,该公司提供定制解决方案,帮助企业更好地运作。公司的目标是使运营更加顺畅并提高生产力。同时,它关心环境并帮助减少能源支出。虽然该公司有 20 名员工,但在各个工厂还有 40 名员工,并在需要时有合同工。截至 2024 年 9 月 30 日,该公司为 120 名客户提供服务,而截至 2024 年 3 月 31 日为 171 名。在截至 2023 年 9 月 30 日的六个月以及 2023、2022 和 2021 财年,该公司十大客户的总收入贡献分别为 89.28%、74.77%、72.88% 和 72.11%。该公司的大部分收入来自制冷剂部门,截至 2025 财年第二季度末,该部门占总收入的 85% 以上。该公司在竞争激烈的环境中运营,并与现有参与者竞争,包括 SRF Limited、Gujarat Fluorochemicals Limited 和 Navin Fluorine International Limited。其中一些竞争对手在规模、财务资源、制造能力、研发和其他资源方面都比该公司大。这意味着他们拥有更广泛的产品组合、更大的销售团队、知识产权资产和跨多个部门的更广阔的市场吸引力。氟化合物和特种气体市场一直在增长,预计将以 10.3% 的复合年增长率增长,从 2024 年的 109.63 亿美元增长到 2028 年的 162.23 亿美元。增长主要得益于人口增长和快速城市化。按应用而言,汽车行业是氟化合物的主要用户细分市场。估值与展望 Stallion India Fluorochemicals 从事各种制冷剂和工业气体业务。该公司凭借优质、经济的产品在该领域开辟了独特的空间。该公司在氟化学行业占有 10% 的市场份额,占据着突出地位。凭借其规划好的业务战略和资本支出模式,未来几年盈利改善空间巨大。在估值方面,公司在发行股票后,以 2024 财年收益为基础,市盈率为 48 倍,处于较高水平。我们认为,在行业顺风和业务可扩展性的推动下,该公司的业务改善空间很大。因此,我们建议对 IPO 给予“认购 - 长期”评级。
图1。PEC设备的示意图,由具有金属背触点的半导体吸收器(左),金属计数器电极(右)和电解质环境(中心)组成。这个数字是基于国家可再生能源实验室NREL的约翰·特纳(John Turner)的描述,但在PEC文献中发现了各种各样的类似描述。一个特别有见地的例子是参考。20 by nozik&memming。横坐标表示这三个成分的空间分离,而纵坐标表示所涉及的电子能和电化学电位。电解质区域中的水平描绘了水分分裂的氧化还原电位,包括假定的过电势(将所需能量从1.23 eV,黑色增加到1.6-1.7 eV,蓝色箭头和水平)。(a):平移N型半导体,(b):平频p型半导体,(c):宽间隙p型C型沙尔科硫酸盐吸收器,带弯曲和束带隙朝向表面,以及(d):(d):AS(c),但对于狭窄的GAP吸收量。(d)中的红色“ x”表示孔达到水氧化电位的途径。
摘要:激光铭刻的石墨烯(LIG)是一种用于微电子应用的新兴材料,用于开发超级电容器,软执行器,互动发电机和传感器。制造技术很简单,但是文献中没有很好地记录了LIG质量的批处理变化。在这项研究中,我们进行了实验,以表征在电化学传感中应用的LIG电极制造中的批处理变化。在聚酰亚胺膜上使用CO 2激光系统合成了许多批次36个LIG电极。使用角膜测量法,立体显微镜,开路电位计和环状伏安法进行了LIG材料。疏水性和电化学筛选(循环伏安法)表明使用商业参考和反电极时,LIG电极批处理变化小于5%。金属化的lig化导致峰值电流和特定电容(阳极/阴极曲线之间的面积)显着增加。但是,批处理变化增加到约30%。研究了两种不同的铂电沉积技术,包括电静态和频率调节的电沉积。研究表明,具有高特异性电容和峰值电流的金属级连杆电极的形成可能是以高批量变异性为代价的。文献中尚未讨论此设计权衡,如果需要进行大规模使用的扩展传感器设计,这是一个重要的考虑。该研究的数据集可通过开放访问存储库获得。这项研究为LIG材料特性的变化提供了重要的见解,以扩展LIG传感器的可扩展开发。需要进行其他研究来了解这种变异性的潜在机制,以便可以开发提高重复性的策略来改善质量控制。
Photoelectrochemical Water Splitting Using Cuprous Oxide (Cu 2 O)-Based Photocathode – A Review Yerbolat Magazov, 1, 2 Asset Aliyev, 1 Kuanysh Moldabekov, 1 Aliya Kurbanova, 1, 2 Assel Rakymbekova, 2 Magzhan Amze, 2 Niyazbek Ibrayev 3 and Vladislav Kudryashov 2,*摘要在这里,我们介绍了在氧化乡土(Cu 2 O)基于氧化浓缩层(CU 2 O)基于光电油化学水分的基础上所取得的进展和瓶颈的关键小型审查,并特别关注与Unbonversion材料,光伏系统和PhotoAnodes,用于Unbiase diasas tandandem dectections的集成。cu 2 O光(光电座)具有吸引人的特性,使其成为一个吸引人的选择,包括合适的带隙,低成本处理,以及在理论极限上高达18%的太阳能至氢效率的潜力;但是,它们的广泛应用受到光腐蚀,低光电流和光吸收不良的限制。这些系统在太阳能驱动的氢生成中展示了这些挑战的解决方案,例如添加上转材料以增加吸收光谱和串联构型,以进行光伏和整体效率。它突出显示了这种类型的细胞的紧凑和模块化特征,同时审查其设计原理,材料策略,性能指标以及与可再生氢生产的大规模混合。
今天的石化行业不仅用于能源目的,而且还依赖化石碳氢化合物。这种使用化石材料的使用正受到欧盟的目标到2050年达到气候中立的目标。欧洲受影响最大的地区是德国西部的安特卫普,鹿特丹和莱茵鲁尔地区之间的跨境区域,这是一个相互联系的石化元群。尽管已经在欧盟和单一国家 /地区开发了几种石化化学物质的隔离场景,但是从化石到非化石原料的过渡将对技术,原料替代品和最终产品份额以及由此产生的位置和地理位置后果的过渡,尚未在台阶下进行。为了填补这一空白,本文提出了一种场景,欧洲石化行业到2050年过渡了从化石过渡,并分析了能源供应和碳供应的解放将如何改变该行业。以这种情况为背景,Zoom-In显示了Antwerp-Rotterdam-Rhine-Ruhr区域如何在技术上和空间上发展。为此,采用了技术 - 经济自下而上的模型,该模型推导了成本 - 最佳途径通往隔离的石化生产网络。分析表明,到2050年在欧盟中实现全面非化石原料使用的石化化学物质的场景很可能与原料基础中的重大变化有关,而且在生产技术中也很可能与重大变化有关。这需要有关原料和能源供应以及基础设施的特定策略。元群集将面临重大挑战,因为其当前在特种聚合物中的强度可能会遭受ARMATICS的成本增加和各自聚合步骤的高能量强度。
冠状病毒之所以被命名,是因为装饰其表面的尖峰蛋白的光环[1,2]。这些S蛋白具有特定细胞受体与宿主细胞结合的特定细胞受体,然后是蛋白酶介导的S蛋白裂解,该蛋白蛋白裂解暴露了促进病毒EN尝试的融合促进域。SARS-COV-2通过其S蛋白与血管紧张素I在靶细胞上转化酶2(ACE2)Re型的血管紧张素I之间感染细胞。ACE2在肾素 - 血管紧张素系统中起关键的调节作用,该系统调节血压,盐和水平衡[3]。感染需要S蛋白质裂解,可能由宿主细胞丝氨酸蛋白酶TMPRSS2(TransMem Brane蛋白酶,丝氨酸2),尽管也可能涉及其他蛋白酶。SARS-CoV-2 belongs (Severe acute respiratory syn drome-related coronavirus 2) to the coronavirus family, which includes the pandemic MERS-CoV (Middle East respiratory syn drome coronavirus) and SARS-CoV (SARS (Severe acute respira tory syndrome)-associated coronavirus) and the lesser known but more common endemic coronaviruses HCoV-OC43 (人冠状病毒OC43),HCOV-HKU1,HCOV-229E和HCOV-NL63。特有的冠状病毒会感染上呼吸道,并频繁引起普通感冒,这反过来又与气味和味道的急性和慢性变化有关[4,5]。SARS-COV还使用ACE2作为其主要受体,在一个案例研究中,SARS-COV感染急性病毒介导的气味变化的主要机制包括由于粘膜肿胀而导致通气损失引起的导电缺陷,粘液产生增加,粘液组成的变化,粘液组成的变化以及嗅觉信号的次要变化以及局部释放的诸如colied coilsied coil synemiss andery机制的局部释放引起的嗅觉信号的变化,导致多种机制的释放,导致多种机制释放,导致其造成的流行。嗅觉缺陷倾向于使用类似于其他与冷相关的Symp Toms(如鼻充血)和HCOV-NL63(HCOV-NL63)相似的时间过程,而特有的冠状病毒不将ACE2用作其主要的细胞受体[6],这是一种可能基本的分子诊断,可能是致病物理学中关键差异的基础。
这项研究利用机器学习(ML)来改善伊朗石化行业两级可持续供应链中决策单位(DMU)的评估。在90个时间段内进行了28个单位的效率计算。根据可持续性标准选择了供应链的输入和输出,通过使用机器学习和网络数据信封分析(NDEA)的混合方法来促进生产计划和单位开发的准确估计。目标是将ML聚类方法与网络NDEA模型一起使用,以确定用于对均质单元进行分类的最有效的聚类算法。我们研究的主要目标是利用机器学习技术来提高决策过程的准确性,特别是在类似单元的聚类中以评估效率。主要目标是通过将它们与每个集群中最有效的单元进行比较来创建提高低效单元的性能的策略。通过实施深层嵌入式聚类算法,我们发现了效率评估和开发计划的实质性改善。聚类结果与传统NDEA模型之间的对比突出了聚类在评估有效边界和启用集中发展策略的近端方面的重要性。这项研究强调了使用ML进行聚类的重要性,以提高工业设施可持续发展的效率评估和战略计划。结果表明,与使用DEA的非聚类方法相比,使用聚类来评估单位的相对效率,可以平均降低与群集效率边界效率低下的单位距离的18%,这代表了效率低效率单位的更可实现的理想目标。
磷(P)是所有生命形式和有限资源的重要元素。p周期在调节主要生产率方面起着至关重要的作用,使其成为农业生产的限制营养素,并通过提取采矿来增加肥料的发展。但是,过多的P可能会对水生和农业生态系统产生有害的环境影响。因此,通过分析技术迫切需要保护和管理P负载,以测量P并精确地确定P形成。在这里,我们探索了一种新的2D吸附结构(GO-PDDA),用于在水性样品中传感正磷酸盐。吸附剂模仿了一群自然界中的一组磷酸盐结合蛋白,并有望在溶液中结合邻磷酸盐。激光诱导的石墨烯(LIG)用GO-PDDA覆盖。电化学阻抗光谱被用作