无机砷在细胞水平上诱发神经毒性的机制尚不清楚。在斑马鱼中,不同浓度的无机砷均有致畸作用。在这里,我们使用了类似浓度的无机砷来评估其对特定神经元类型的影响。受精后 5 小时 (hpf) 的斑马鱼胚胎暴露于亚砷酸钠中,在 72 hpf 幼虫中诱发发育毒性(体长缩短),浓度从 300 mg/L 开始。在 500 mg/L 亚砷酸钠下检测到死亡或明显的形态畸形。虽然 200 mg/L 亚砷酸钠诱导酪氨酸羟化酶阳性(多巴胺能)神经元的发育,但对 5-羟色胺(血清素能)神经元的发育没有显著影响。亚砷酸钠降低了乙酰胆碱酯酶活性。在hb9-GFP转基因幼鱼中,200和400mg/L亚砷酸钠均在脊髓中产生了多余的运动神经元。通过Gant61抑制运动神经元发育所必需的Sonic Hedgehog(Shh)通路,可以阻止亚砷酸钠诱导的多余运动神经元发育。电感耦合等离子体质谱(ICP-MS)分析表明,在200mg/L和400mg/L亚砷酸钠处理下,每只幼鱼平均砷含量分别为387.8pg和847.5pg。数据首次表明无机砷改变斑马鱼幼鱼多巴胺能神经元和运动神经元的发育,后者是通过Shh通路发生的。这些结果可能有助于理解为什么接触砷的人群会患上精神疾病和运动神经元疾病,并且 Shh 可能潜在地充当砷毒性的血浆生物标志物。
电感耦合等离子体 (ICP) 光谱法 22 总结 22 理论 22 检测限/范围 23 准确度/精密度 23 方法比较 23 砷形态分析 25 概述 27 样品和标准品的处理 27 样品 27 标准品 28 蒸发预浓缩 28 选择性氢化物生成 28 总结/理论 28 硼氢化钠还原 29 砷 (m) 的还原 30 砷 (V) 的还原 30 DMAA 和 MMAA 的还原 32 砷的分离 33 连续氢化物生成 33 干扰 33 检测系统 34 SDDC 检测 34 高效液相色谱法 35 离子色谱法 37 柱色谱法 38 气相色谱法 39 选择性液-液萃取40 AA-石墨炉检测 40 中子活化分析检测 41 选择性沉淀 42 比色法 43 钼砷酸盐 43 释放的碘 44 伏安法和极谱法 45 方法比较 46
摘要:锗已成为自旋电子学和量子信息应用领域中极具前景的材料,与硅相比具有显著的基本优势。然而,利用施主原子作为量子比特来制造原子级器件的努力主要集中在硅中的磷上。将磷以原子级精度定位在硅中需要进行热结合退火,但这一步骤的成功率低已被证明是阻碍其扩大到大规模器件的根本限制。本文,我们对锗 (001) 表面上的砷化氢 (AsH 3 ) 进行了全面研究。我们表明,与之前研究过的任何硅或锗上的掺杂剂前体不同,砷原子在室温下完全结合到替代表面晶格位置。我们的研究结果为下一代原子级供体设备铺平了道路,该设备将锗的优越电子特性与砷化氢/锗化学的增强特性相结合,有望扩大到大量确定性放置的量子比特。
蓝剂是二甲胂酸 (CH 3 ) As O 2 H) 和二甲胂酸钠 (C 2 H 6 AsNaO 2 ) 的混合物,是一种战术性含砷除草剂,在越南战争期间用于摧毁草和水稻作物。天然和合成的砷可以降解为水溶性形式并存留在地下水中,可能导致饮用水中砷含量升高。美国国防部 (DOD) 和美国农业部 (USDA) 牧场手册行动记录了越南战争期间 (1961-1971) 在越南南部喷洒的战术性除草剂(包括蓝剂)非常详细、相当完整且可公开获取。越南共和国 (RV) 在 Khai Quang 计划期间喷洒的战术除草剂则并非如此,该计划得到了美国陆军、美国海军和中央情报局 (CIA) 在湄公河三角洲的支持。在美国越南战争正式开始之前,越南共和国军队喷洒了蓝剂三年。从 1962 年到 1965 年,越南共和国军队、美国陆军、美国海军和 CIA 的喷洒记录很少。越南战争老兵、历史学家和学者报告称,在美国陆军、美国海军和 CIA 的支持下,越南共和国军队在湄公河三角洲和中央高地的稻田和红树林中喷洒了 320 万升(468,008 公斤)蓝剂。美国医学研究所估计,RV Khai Quang 项目期间喷洒了 320 万升(468,000 公斤砷)。除此之外,美国空军的“牧场之手”行动还主要通过 C-123 飞机喷洒战术除草剂“蓝剂”。“牧场之手”行动任务保持了其位置和数量 -
抽象地热流体将重金属元素带到表面,其中之一是砷(AS)。砷在地壳中自然存在,土壤中存在,然后可以在空气,水和表面环境上进入矿物质。以气体的形式,砷与岩石的温度,挥发性元件的温度有关,仅在高温下释放。在这项研究中,我们将研究砷的特征,砷动员以及如何在几种条件下表面释放砷气体。基于智利,在火山区的参考文献中说,砷气体含量与该区域具有高温并且在表现类型上有多种条件。从印度尼西亚不同地热区域的两次验证中,我们与参考文献相同。基于此,我们假设地热区域上的砷气体含量与岩石的高温相关,在一般中,我们称其为热源。关键字:砷气体,温度。引言地热流体带有重金属元件,例如Ag,Au,Cu,Sb,Ti,其中一种是砷(AS)(AS)(Brown and Simmons,2003)。砷可以在地壳上发现,并且自然地以高温表面浮出水面。基于对拉丁美洲的研究(Simfors等,2020年)和先前对印度尼西亚的研究,尤其是在地热区域(Taufiq,2021),我们可以假设砷气体含量与高温之间的相关性。数据和方法1。在这项研究中,我们想评估和概述先前研究的假设,其中几种有关砷气体的更新引用,以了解砷气体如何动员,特征气体以及与高温相关。地热流体地热液,含有游离硫酸(SIO 2),盐酸(HCL)和Hydroflouric(HF)酸(Gupta和Roy,2007年)。在低温地热流体的情况下,流体发展所涉及的过程通常是溶解原代矿物质和次级矿物质的沉淀,其程度取决于温度和停留时间。对于高温地热流体,预计会有更多的水岩相互作用,从而导致较高的岩石衍生成分。此外,在火山高温系统中,预计将期望沸腾和凝结的影响以及可能与岩浆挥发物混合。从地热流体的不同起源来看,有些流体与其他液体相比拥有更多有关基础地热系统的信息(Armansson等,全部,2022年)。
摘要 从细菌到人类,许多生物体都存在砷解毒系统。在之前的研究中,我们在嗜热菌 Thermus thermophilus HB27 ( Tt SmtB ) 中发现了一个砷反应转录调节因子。在这里,我们更详细地描述了嗜热菌的砷抗性系统。我们采用基于 Tt SmtB 的下拉分析,对用砷酸盐和亚砷酸盐处理的培养物的蛋白质提取物进行研究,以获得 S -腺苷酸-L-蛋氨酸 (SAM) 依赖的亚砷酸盐甲基转移酶 ( Tt ArsM )。进行了体内和体外分析,以阐明砷抗性网络的这一新组成部分及其特殊的催化机制。在大肠杆菌中异源表达 TtarsM 可在中温温度下实现亚砷酸盐解毒。尽管 Tt ArsM 不含有典型的亚砷酸盐结合位点,但纯化的蛋白质确实会催化 SAM 依赖性的亚砷酸盐甲基化,形成单甲基亚砷酸盐 (MMA) 和二甲基亚砷酸盐 (DMA)。此外,体外分析证实了 Tt ArsM 和 Tt SmtB 之间的独特相互作用。接下来,开发了一种高效的基于 ThermoCas9 的基因组编辑工具,以删除嗜热菌基因组上的 Tt ArsM 编码基因,并确认其参与亚砷酸盐解毒系统。最后,用编码稳定化黄色荧光蛋白 (sYFP) 的基因取代嗜热菌 D TtarsM 基因组中的 TtarsX ef flux 泵基因,以创建灵敏的基于基因组的生物报告系统,用于检测砷离子。
我们评估了 ATO 对不同儿科 SHH-MB 细胞系(ONS-76:TP53 - 野生型;DAOY 和 UW402:TP53 - 突变型)的潜在影响。确认了 MB 细胞系分子亚群并验证了 TP53 突变。单独使用不同浓度(1-16 µ M)的 ATO 处理或与辐射剂量(0.5、1、2 和 4 Gy)组合处理后评估了细胞活力、克隆形成能力和细胞凋亡。通过 WB 评估了 Rad51 和 Ku86 蛋白。ATO 处理降低了所有 SHH-MB 细胞系的细胞活力。ATO 暴露后还观察到克隆形成能力显著下降和细胞凋亡率升高,SHH-MB TP53 - 突变型的细胞死亡更明显(> 70%)。 ATO 与放射治疗联合治疗也减少了 UW402 肿瘤细胞中的菌落形成,这与 DNA 损伤修复蛋白 Rad51 和 Ku86 无关。计算机模拟分析表明,来自细胞周期和 p53 通路的一组基因在 SHH 肿瘤亚型中存在差异表达,这表明细胞系可能根据基因表达谱对疗法产生反应。在此,我们展示了 ATO 在儿童 SHH 细胞系中的细胞毒性,对 MB-SHH TP53 突变细胞具有明显的放射增敏作用。这些结果突出了 ATO 单独或与放射疗法联合使用的潜力,支持进一步的临床研究。