1. 简介 只有借助原子力显微镜 (AFM) (1 , 2) 和光学单分子光谱 (3–9) 等新方法,才能直接研究单个蛋白质分子的折叠。这些技术除了直接描述分子过程之外,还提供了根本性的优势:它们可以解析和量化单个分子或亚群的属性,而这些属性在经典的集合实验中是无法获得的,在经典的集合实验中,信号是许多粒子的平均值。荧光光谱是一种特别有吸引力的技术,因为它具有极高的灵敏度和多功能性 (5 , 10 , 11) 。与 Förster 共振能量转移 (FRET) (12–14) 相结合,它使我们能够研究单个蛋白质的分子内距离分布和构象动力学。时间分辨的集合 FRET 还可用于分离亚群并获取有关距离的信息
结果:在Div 5至8的生长锥中,荧光构建体的分布相似。生长锥中TSMOD(28.5 3.6%)的平均FRET效率高于葡萄酒(24.6 2%)和VINTL(25.8 1.8%)(p <10-6)的平均FRET效率。虽然很小,但葡萄酒和VINTL的FRET效率之间的差异具有统计学意义(P <10-3),这表明Vinculin在生长锥中的张力低。用Rho相关激酶抑制剂Y-27632进行了两个小时的治疗不会影响平均FRET效率。生长锥显示出形态学的动态变化,如延时成像所观察到的。Vints FRET效率比TSMOD FRET效率随时间的函数显示出更大的方差,这表明与TSMOD相比,Vints FRET效率更大的葡萄酒效率对生长锥动力学的依赖性更大。
该研究主题出现在WTF研讨会系列的背面(Förster等,2022;Förster等,2023a),将一个跨学科的研究人员组合在一起,从机器人和计算语言学家和计算语言学家到对话分析师和对话分析师和认知科学家进行了公开和坦率地进行了研究(Robally everally of Offore)的研究(robally obotor)进行了研究(Robally extressection),他们在这些方面进行了研究。在下面的贡献文章中阐述了研讨会中讨论的一些问题,可以在Förster等人的研讨会摘要文章中找到更多的指示。(2023b)。该研究主题有助于两个主要目标:首先,我们为报告人类机器人互动(HRI)中通常发生的交流失败提供了一个平台。其次,该主题旨在突出潜在的多模态修复机制的机会,以使机器人语音界面更具弹性,以使其具有弹性。因此,我们包括几篇文章记录和分析此类失败的文章,以阐明许多机器人从业人员经历的一个未报告的问题。此外,该主题还包含报道HRI中有关会话修复的现有研究的文章,并概述了此类机制的潜力。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
摘要:激子和光子之间的强相互作用会导致激子 - 两极子的形成,与其成分相比,具有完全不同的特性。通过将材料合并到电磁场紧密限制的光腔中,产生了极化子。在过去的几年中,偏光态的放松已被证明可以实现一种新型的能量转移事件,该事件的长度比典型的fo rster rster半径大大大。但是,这种能量转移的重要性取决于短寿命的极化状态有效衰减到可以执行光化学过程的分子局部状态(例如电荷转移或三重态状态)的能力。在这里,我们在强耦合方面定量地研究了极性子与红细胞B的三胞胎状态之间的相互作用。我们使用速率方程模型分析了实验数据,主要采用角度分辨反射率和激发测量值。我们表明,从极化子到三重态的跨系统交叉的速率取决于激发极性状态的能量比对。此外,可以证明,在强耦合方案中,可以大大提高间间穿越速率,直到接近北极星辐射衰减的速率。■引言激子 - 果龙是由于激子与电磁场之间的强烈相互作用而产生的。1,2鉴于从极化元素到分子局部态在分子光物理学/化学和有机电子中提供的机会,我们希望对从这项研究获得的这种相互作用的定量理解将有助于开发Polariton Empowered设备。
引导能量流和纳米晶体发色团混合组件中产生的激发态的性质对于实现它们的光催化和光电应用至关重要。通过结合稳态和时间分辨的吸收和光致发光 (PL) 实验,我们探测了 CsPbBr 3 -罗丹明 B (RhB) 混合组件中的激发态相互作用。PL 研究表明,CsPbBr 3 发射猝灭,同时 RhB 荧光增强,表明存在单线态能量转移机制。瞬态吸收光谱表明这种能量转移发生在 ~ 200 ps 的时间尺度上。为了了解能量转移是通过 Förster 还是 Dexter 机制发生的,我们利用简便的卤化物交换反应通过与氯化物合金化来调整供体 CsPbBr 3 的光学特性。这样,我们便可以调节供体 CsPb(Br 1-x Cl x ) 3 发射和受体 RhB 吸收之间的光谱重叠。对于 CsPbBr 3 - RhB,能量转移速率常数 (k ET ) 与 Förster 理论非常吻合,而与氯化物合金化以产生富含氯化物的 CsPb(Br 1-x Cl x ) 3 则更利于 Dexter 机制。这些结果凸显了优化供体和受体特性对于设计采用能量转移的光收集组件的重要性。通过纳米晶体供体的卤化物交换可以轻松调节光学特性,这为研究和定制钙钛矿发色团组件中的激发态相互作用提供了独特的平台。
对蛋白质,亚基或其他生物分子之间纳米距离的光学研究一直是数十年来Förster共振能量转移(FRET)显微镜的独家特权。在这项工作中,我们表明Minflux荧光纳米镜检查可直接,线性和吻线精度直接,线性,线性,线性,线性,线性,线性,线性直接,直接,直接,线性地降低到1 angstrom。我们的方法通过量化多肽和蛋白质中的1至10纳米距离来验证。此外,我们可视化了免疫球蛋白亚基的方向,在人类细胞中应用了该方法,并揭示了组氨酸激酶PAS PAS结构域二聚体的特定构型。我们的结果打开了通过直接位置测量在骨内分子尺度上检查接近和相互作用的大门。o
-基于连续介质中对称保护的 THz 束缚态的柔性 Ruddlesden-Popper 2D 钙钛矿超结构的设计和分析,Science Reports,2023 年 - 基于准 BIC 的全介电超表面,用于超灵敏折射率和温度传感,Science Reports,2023 年 - 通过 F?rster 共振能量转移进行 DNA 测序,OPTICS EXPRESS,2022 年 - 通过石墨烯纳米孔进行带间等离子体增强的 DNA 核碱基光学吸收,OPTICS LETTERS,2022 年 - 基于高灵敏度皱褶 2D 材料的等离子体生物传感器,Biomedical OpƟcs Express,2021 年 - 低压电感应二次谐波基于模态相位匹配的硅波导中的量子产生,《光波技术杂志》,2020 年
通过哺乳动物组织的光线有限,光动力疗法作为癌症治疗程序的广泛应用受到阻碍。由于光敏化的细胞毒性单线氧需要对肿瘤 - 定位光敏剂的效率激发,因此只能在辐照组织的前几米米中保证Pho-Todyanic作用。在这项工作中,我们证明了持续发光的现象,即从某些金属离子激发态(带有Crys-Tal的缺陷充当能量陷阱)的发射,可以提供替代的激发可能性。因此,持续发光的纳米肌会通过肉体匹配的身体敏化剂(FRET =fçrster共振能量传递)功能化,然后在给药到细胞培养或生物体之前就被兴奋。发现该系统继续产生单线氧气无限的位置,而无需连续的光子激发。