摘要:青贮是保存高水分牧草的有效技术之一。然而,豆科植物青贮的成功很大程度上取决于附生微生物菌群、缓冲能力和青贮牧草的水溶性碳水化合物含量。在本研究中,三种选定的乳酸菌 (LAB) 菌株被用作饲料豌豆 (Pisum sativum L.) 的微生物添加剂(10 6 CFU/g 鲜物质)。这些菌株包括双酶乳杆菌 (LS-65-2-2) 和植物乳杆菌 (LS-72-2),均从土耳其的牧场分离出来,还有枯草芽孢杆菌,它已经用于这些目的。目的是评估这些菌株对微生物组成和所得青贮饲料质量的影响。在 5 个时间点(第 0、2、5、7 和 45 天)进行青贮饲料开饲,重复 3 次。接种乳酸菌的效果在统计学上存在差异(P < 0.001)。研究结果显示,测试参数的值如下:pH(4.52–4.86)、乳酸菌(5.51–8.46 log 10 CFU/g 青贮饲料)、肠道细菌(2.24–3.61 log 10 CFU/g 青贮饲料)、酵母菌(6.20–7.03 log 10 CFU/g 青贮饲料)、中性洗涤纤维(38.85–41.93%)、酸性洗涤纤维(ADF,32.91–35.75%)和相对饲料价值(RFV,135.90–151.73)。与对照组相比,接种乳酸菌导致饲料豌豆青贮饲料的 pH 值显著下降,干物质 (DM) 回收率增加(P < 0.001)。青贮饲料中乳酸菌的丰度显著增加(P < 0.001),而接种青贮饲料中肠道细菌含量(P < 0.001)、pH、NH 3 -N(P < 0.01)和ADF(P < 0.05)降低。接种乳酸菌后,RFV 显著提高。总体而言,与枯草芽孢杆菌相比,添加乳酸菌可以改善发酵过程和青贮饲料质量,同时提高干物质回收率并降低青贮饲料 pH 值。
菊苣根 ( Cichorium intybus L. var. sativum ) 用于提取菊粉,菊粉是一种用作天然甜味剂和益生元的果糖聚合物。然而,在菊粉提取过程中需要去除味道苦涩的倍半萜内酯,而菊苣正是因为这种内酯才具有其独特的风味。为了避免这种提取过程及其相关成本,最近通过灭活四个拷贝的 germacrene A 合酶基因 ( CiGAS-S1、-S2、-S3、-L ),创建了倍半萜内酯含量较低的菊苣变种,该基因编码的酶可启动菊苣中苦味倍半萜内酯的生物合成。在本研究中,对 CRISPR/Cas9 试剂的不同递送方法进行了比较,比较了它们在 CiGAS 基因中诱导突变的效率、脱靶突变的频率以及它们对环境和经济的影响。 CRISPR/Cas9 试剂通过农杆菌介导的稳定转化或使用相同 sgRNA 的质粒或预组装核糖核酸复合物 (RNP) 瞬时递送。所有使用的方法都会导致 CiGAS -S1 和 CiGAS -S2 基因中出现大量 INDEL 突变,这些基因与所用的 sgRNA 完全匹配;此外,与 sgRNA 有一个错配的 CiGAS -S3 和 CiGAS -L 基因也发生了突变,但突变效率较低。虽然使用 RNP 和质粒递送会导致双等位基因、杂合或纯合突变,但质粒递送会导致 30% 的质粒片段在基因组中不必要地整合。通过农杆菌转化的植物通常表现出嵌合现象和 CiGAS 基因型的混合。当植物生长较长时间时,这种基因镶嵌变得更加多样化。虽然瞬时和稳定递送方法中靶基因型各不相同,但在六种已识别的潜在脱靶中未发现脱靶活性,这些脱靶存在两到四个错配。这些方法对环境的影响(温室气体 (GHG) 排放和一次能源需求)在很大程度上取决于它们各自的电力需求。从经济角度来看 - 就像大多数研究和开发一样
3 尼日利亚阿贝奥库塔联邦农业大学园艺系 摘要 血管紧张素转换酶 (ACE) 抑制一直是抗高血压药物开发的一条有希望的途径。我们的研究使用计算机模拟方法调查了来自六种药用植物(Allium sativum L.、Zingiber officinale Roscoe、Acalypha godseffiana Mast.、Moringa oleifera Lam.、Vernonia amygdalina Delile 和 Rauvolfia vomitoria Afzel.)的生物活性化合物对 ACE 的抑制潜力。筛选了三十一 (31) 种生物活性化合物,同时使用雷米普利和依那普利作为对照药物。从 PubChem 在线服务器获得了生物活性化合物和对照药物的 3D 结构和规范简化分子输入线输入系统 (SMILES)。使用 SwissADME 在线服务器和 AutoDock Vina 软件对生物活性化合物进行药物相似性评估,并对成功化合物进行蛋白质-配体对接。还进行了 ADMET(吸收、分布、代谢、排泄、毒性)分析,以评估命中配体是否适合进一步药物开发。在筛选的 31 种化合物中,17 种至少通过了药物相似性判定的五条标准规则中的四条,而对照药物(雷米普利和依那普利)未通过其中一条规则。 Ajmaline、芹菜素、槲皮素、Cryptolepine、木犀草素、羟基维诺内酯、山奈酚和维诺达洛尔的结合能分别为 -9.6 kcal/mol、-8.7 kcal/mol、-8.5 kcal/mol、-8.4 kcal/mol、-8.4 kcal/mol、-8.3 kcal/mol、-8.3 kcal/mol 和 -7.8 kcal/mol,高于雷米普利和依那普利(-7.6 kcal/mol 和 -7.5 kcal/mol)。较高的结合能和结合相互作用的稳定性表明这些命中配体是针对 ACE 的潜在抗高血压药物。然而,需要进行湿实验室实验研究来验证这些化合物的抑制活性并阐明其作用机制。关键词:植物化合物、结合亲和力、高血压、靶蛋白、药用植物 *通讯作者电子邮件:fawibeoo@funaab.edu.ng 简介 高血压,俗称高血压,是影响人类最常见的疾病之一
氮是限制植物生长的最重要必需元素。尽管空气中 78% 是氮,但陆生植物物种尚未进化出直接获取和利用氮来生长的途径。然而,豆科植物,如大豆 (Glycine max)、豌豆 (Pisum sativum) 和豆类 (Phaseolus、Vigna 和 Cajanus 物种) 与某些细菌形成共生关系,这些细菌可以将环境中普遍存在的氮固定为氨,从而使它们能够利用它。这个过程称为生物固氮 (BNF)。在通过能源密集型的哈伯-博施法生产合成氮肥之前,BNF 是补充农业用地生物可利用氮的主要来源 1 。然而,尽管合成氮肥的输送效率和作物利用效率较低,但如今仍被广泛用于补充土壤肥力。这最终会显著增加温室气体 (GHG) 排放、氨挥发和活性氮从陆地流失到水中。氮肥施用量的持续增加将通过过度释放强效温室气体(包括 N 2 O,其效力在 100 年内是 CO 2 的 300 倍)和大量消耗化石燃料 2 ,进一步危及气候稳定。N 2 O 也是 21 世纪臭氧消耗的主要原因。因此,减少氮肥施用是缓解粮食不安全和全球变暖的关键策略。提高大豆的 BNF 含量为减少氮肥使用和提高作物产量提供了无与伦比的机会。大豆是四大主要粮食作物之一,2018 年固定了 25 Tg 氮,占豆科作物产量的 70% 3 。大豆的生物固氮作用也可用于间作策略(即在邻近种植两种或两种以上的作物),以提高土壤肥力并提高产量 4 。此外,大豆是人类饮食中经济且优质的植物蛋白来源。此外,它还含有必需的营养素,例如不饱和脂肪酸、磷脂、B 族维生素和矿物质,这些营养素对改善人类饮食质量具有巨大潜力 5 。植物性蛋白质饮食有望将全球活性氮使用量减少一半 6 。然而,天然的BNF系统受到几个缺点的困扰,包括固氮酶的环境敏感性(O 2 和应激诱导的活性氧 ROS 对固氮酶的损害)、BNF 过程的高能耗、缺乏必需的矿物质