计算框架和理论建模的最新进展已显着改善了对高运动材料的搜索。高吞吐量虚拟筛选(HTVS),该过程使用理论技术分析了大型分子库,并将其范围缩小到一小部分有希望的候选者进行实验验证,现在可以评估广泛的化学库的评估。20–25这种方法提高了识别新型高动力半导体的概率,并提供了对电荷运输的基本物理学的见解。26–29此外,HTVS的一个显着副作用是生成广泛的数据库,该数据库包含这些分子的计算物理特性,这些数据库促进了机器学习(ML)技术的应用(ML)技术,以预测和优化新分子系统的正常功能。30,31作为HTVS研究的例子,Schober等。29设计了一种筛选方法,通过分析来自大分子晶体数据库的电子耦合和重组能来鉴定具有高载体迁移率的有机半导体。他们的方法发现了已知和新颖的有前途的材料。在另一项研究中,Nematiaram等。27利用瞬态定位理论32,33筛选剑桥结构数据库(CSD)34识别几种高动力材料并对影响移动性的关键参数进行排名。值得注意的是,他们强调了电荷转运两维的重要性(2D),也称为带动型,其中电荷转运主要发生在二维平面内。将ML模型与HTV集成虽然早期的研究表明各向同性带对电荷运输的潜在影响,但13,18,32,35参考。27是第一个通过对现有结构进行的大规模计算在统计上验证这一观察结果的人。尽管在HTVS方法方面取得了重大进步,但对于大量结构而言,物理属性(例如2D)的计算仍然是一项计算要求的任务。此限制在化学空间的有效探索中提出了一个主要的瓶颈,尤其是随着可用化学数据库的多样性和复杂性继续扩展。因此,迫切需要开发更多有效的算法和方法,这些算法和方法可以加速这些构成过程。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.17.638297 doi:biorxiv Preprint
线粒体在组织稳态,压力反应和人类疾病中的重要性,结合了它们在各种结构和功能状态之间过渡的能力,使它们成为监测细胞健康的出色细胞器。因此,需要技术在各种细胞和细胞环境中准确分析和量化线粒体组织的变化。在这里,我们提出了一种创新的计算机化方法,该方法可以通过提供三十多个功能,从而实现对线粒体形状和网络体系结构的准确,多尺度,快速和具有成本效益的分析。为了促进定量结果的解释,我们介绍了两种创新:使用Kiviat-Graphs(此处称为MiteSostels图),以表示高度符合性数据和可视化各种Mito-Cellular构型的形式,以形式的形式(称为mitosoposigils)。我们在从基础条件下培养的现场正常的人皮细胞中收集的丰富数据集上测试了我们的全自动图像分析工具,或暴露于特定应力,包括UVB辐射和农药暴露。我们证明了我们的专有软件(称为Mitotouch)在控制和压力的真皮成纤维细胞之间以及正常成纤维细胞和其他细胞类型之间敏感折磨的能力(包括癌症组织衍生的成纤维细胞和原发性角膜细胞),表明我们的自动分析分析捕获了分析差异。我们的工具具有在其他研究领域(例如基于这种新颖的算法,我们报告了一种保护性天然成分的鉴定,该保护性成分对线粒体组织产生了有害氢(H2O2)的有害影响。因此,我们构思了一种新型的湿干管道,结合细胞培养物,定量成像和符号学分析,以详尽地分析活着的粘附细胞中线粒体形态。
图7:实验设置。为了改变温度,我们将使用含有液氮或氦气的血管。在容器中,由于传热机制,温度梯度沿垂直方向形成(图7)。温度t(x)取决于距氦表面的距离x。确切的温度曲线由几个因素确定,包括氦气量,容器的几何形状及其绝缘特性。样品(Cu,ta uds si)安装在由COP-PEN制成的样品支架(Probenhalter)上,该样品拧到杆上(Tauchrohr)并被圆柱形屏蔽(Schutzrohr)覆盖(图9)。另外,将铂和碳电阻添加到样品持有器中,该量将用于测量温度。
摘要。半自主车需要监视驾驶员检查他是否正在监督系统和/或准备接管。大多数汽车都依靠方向盘传感器来检测手,并且不监视驾驶员可能执行的非驾驶相关任务。我们提出了一个带有多个分支体系结构的基于摄像头的系统,该系统在代表次要任务和平板电脑位置的平板电脑上提供了方向盘上的手数。它还解决了其他基于摄像头系统的常见问题:转向轮前的自由手可以归类为抓住它。此外,我们的系统处理驾驶员可能在方向盘上使用平板电脑的情况,因为他可以在自主模式下进行。这两个点对于评估驾驶员需要接管的时间至关重要。最后,将方向盘和相机系统都结合在一起也将使车辆更难欺骗,因此更安全。视频可用:https://www.youtube.com/watch?v=qfyom4sdwr4
半导体量子点中的旋转是有希望的局部量子记忆,可以产生偏振化编码的光子簇状态,如开创性的Lindner和Rudolph方案[1]。然而,利用光学转变的极化程度受到共鸣激发方案的阻碍,这些方案被广泛用于获得高光子不明显。在这里我们表明,声子辅助激发(一种保持高度可区分性的方案)也允许完全利用极化的选择性光学转变来初始化并测量单个自旋状态。我们在低横向磁场中访问孔自旋系统的相干性,并在激发态的辐射发射过程或量子点基态下直接监测自旋倾向。我们报告的旋转状态检测功能为94。7±0。由光学选择规则和25±5 ns孔旋转相干时间授予的2%,证明了该方案和系统具有以十二个光子为单位的线性簇状态的潜力。
汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
Effect of Multiphase Flow Parameters on CO 2 Sequestration in Deep Saline Aquifers Nimisha Gautam Sludge Settlement and System Performance at Manatee County's WWTP Kwabena Darko Okyere Enhanced Onsite Wastewater Treatment Systems for N removal Natchaya Luangphairin Biofilter Design and Management Impacts on Microbiome and Contaminant Degradation Edward Anica Performance, Price, and Perceptions哥斯达黎加的化粪池和堆肥厕所Maedeh yazdani arani饮用水质量评估
半导体压电纳米线 (NW) 是开发由生物相容性和非关键材料制成的高效机械能传感器的有希望的候选材料。人们对机械能收集的兴趣日益浓厚,因此研究半导体 NW 中的压电性、自由载流子屏蔽和耗尽之间的竞争至关重要。到目前为止,由于表征这些纳米结构中的直接压电效应所带来的实验挑战,这一主题很少得到研究。在这里,我们使用 DataCube 模式下的 PFM 技术并通过逆压电效应测量有效压电系数来摆脱这些限制。我们证明了垂直排列的 ZnO NW 的有效压电系数随着半径的减小而急剧增加。我们还提出了一个数值模型,通过考虑掺杂剂和表面陷阱来定量解释这种行为。这些结果对基于垂直排列的半导体 NW 的机械能传感器的表征和优化有很大影响。