控制含有挥发性有机化合物(VOC)的产品和材料以保护环境和人类健康很重要。VOC通常用于化学实验室和行业,在这些实验室和行业中,其不希望的暴露和泄漏可能导致空气污染,健康问题和安全问题。13,14通常,化学传感器是使用金属和金属氧化物制成的。但是,基于石墨烯的传感器在安全,能耗和工作条件(例如温度和湿度)方面具有优势。与此相反,化学传感器对目标分析物的化学选择性和敏感性有一些局限性。对文献的全面综述得出的结论是,活跃材料的制备和传感器的制造需要高科技设备和复杂的过程,从而提高了这些传感器的成本。4,15,16这些是该领域工作的研究人员所面临的一些主要问题。因此,无穷无尽的效果是
摘要 个体对疼痛的敏感性存在很大差异,这要归功于大脑、基因和心理因素。然而,由于这些因素之间存在复杂的相互作用,因此缺乏一个整合这些因素的多维模型。为了解决这个问题,我们使用冷加压测试测量了疼痛敏感性(即疼痛阈值和疼痛耐受性),收集了磁共振成像 (MRI) 数据和遗传数据,并评估了心理因素(即疼痛灾难化、疼痛相关恐惧和疼痛相关焦虑),这些研究对象包括 450 名健康男女参与者(160 名男性,290 名女性)。使用多模态 MRI 融合方法,我们分别确定了与疼痛阈值和耐受性相关的 2 对共变结构和功能大脑模式。这些模式主要涉及与自我意识、感觉辨别、认知评价、动作准备和执行以及疼痛的情感方面相关的区域。值得注意的是,疼痛灾难化与疼痛耐受性呈负相关,并且这种关系仅由男性参与者的多模态共变大脑模式介导。此外,我们还发现了脂肪酸酰胺水解酶基因中的单核苷酸多态性 rs4141964 与疼痛阈值之间的关联,这种关联由所有参与者中发现的多模态共变大脑模式介导。总之,我们提出了一个整合大脑、基因和心理因素的模型,以阐明它们在塑造个体间疼痛敏感性差异方面的作用,强调了多模态共变大脑模式作为基因/心理因素与疼痛敏感性之间关联的重要生物介质的重要贡献。
基于奖励的学习和决策是了解注意力缺陷多动障碍(ADHD)的症状的主要候选人。但是,只有有限的证据可用于多动症中所见变化的神经计算基础。这涉及动态变化的环境中的灵活行为适应,这对于患有多动症的人来说是具有挑战性的。先前的一项研究表明,青少年多动症的选择转换升高,伴随着内侧前额叶皮层中的学习信号。在这里,我们使用概率逆转学习实验(fMRI)研究了与年龄和性别匹配的对照(n = 17)相比,我们研究了ADHD(n = 17)的年轻人(n = 17)。任务需要持续学习,以指导灵活的行为适应变化的奖励意外事件。为了解开行为数据的神经计算基础,我们使用了加固学习(RL)模型,该模型为fMRI数据的分析提供了信息。ADHD患者的表现比对照组较差,尤其是在逆转之前的试验中,即奖励调解稳定时。这种模式是由“嘈杂”选择切换产生的,无论先前的反馈如何。RL建模显示,ADHD患者的负反馈降低了增强敏感性和增强的学习率。在神经水平上,这反映在ADHD中左后顶叶皮层中选择概率的降低表示。由于样本量相对较小,这些神经计算发现仍然是初步的。建模显示了对未选择选项的学习的边缘降低,这与学习信号的边缘减少相似,该学习信号纳入了左侧腹侧纹状体中的未选择选项。在一起,我们表明,多动症中的灵活行为受损是由于选择过度切换(“超灵活性”),这取决于学习环境,这可能是有害的或有益的。在计算上,这是由于对加强的敏感性而引起的,我们检测到了注意力控制网络中的神经相关性,特别是在顶叶皮层中。
在感应介质的折射率中。5通过金属/介电板的界面通过金属/介电板的界面诱导金属的自由电子振动性,而这反过来,这又,它因能量传递而沿界面开始旋转,从而使Indistion Em Wavis携带以免费的电子表面携带,因此,该金属的自由电子均促进了金属的自由电子,从而诱导了金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而使Indistion Em the Em em the Emalons携带的是金属的携带。6沿金属和电介质之间界面的自由电子的集体传播称为表面等离子体波(SPWS)。7 SPWS和Evanescent Wave之间的耦合是由于相匹配而导致的,这是实现SPR条件的必要条件。8,这种情况的实现导致结构6 - 8的重复响应的谐振倾角,因为表面波的激发是直接通过3D梁的激发而引起的。有不同的激发技术,例如Kretschmannconguration,其中,棱镜用于表面等离子体的激发,ottoconguration,ber耦合,以及在全球研究人员使用的耦合方案。9在所有这些耦合方案中,Kretschmanncon基于guration基于辅助的耦合方案是最受欢迎的耦合方案,是通过在TM极极化的入射波中通过TM极极化的入射波涂上(AU)和银色(AG)的新型金属(例如(AU)和银色(Ag)的新型金属(例如(AU)和银色(Ag)),通过涂层新型金属(例如(AU)和银色(Ag),来激发evaneScent波。10黄金通常是理想的选择,因为它的能力
蛋白质组是在特定时间由基因组,细胞,组织或生物体表达的完整蛋白质集。复杂性来自几个关键因素,包括:大量不同的蛋白质,给定蛋白质的潜在蛋白质成型数量以及生理相关蛋白质浓度的广泛动态范围。此外,蛋白质组处于恒定状态,并且可以随着时间的推移明显变化。在蛋白质组学中,这种变化用于将特定蛋白质与其功能和健康或疾病状态相关联。反过来,这些知识被利用用于诊断疾病和开发新药物靶标。
个人如何从正面和负面的奖励反馈中学习并据此做出决策,可以通过强化学习的计算模型形式化(Sutton and Barto 1998)。RL 模型的核心是奖励预测误差 (RPE),它反映了已实现奖励和预期奖励之间的差异。从神经上讲,预测误差由中脑多巴胺的阶段性释放发出信号(Hollerman and Schultz 1998,Schultz 2013),同时纹状体和其他大脑区域的神经活动也相应出现(Pine, Sadeh et al. 2018)。人类功能性神经影像学研究报告了中脑、纹状体和几个皮质区域中 RPE 的相关性(O'Doherty, Dayan et al. 2004,D'Ardenne, McClure et al. 2008,Daw, Gershman et al. 2011,Deserno, Huys et al. 2015)。 RL 神经行为相关性的个体差异确实与人类多种多巴胺测量方法有关,包括药理学操作(Pessiglione、Seymour 等人 2006 年、Westbrook、van den Bosch 等人 2020 年、Deserno、Moran 等人 2021 年)、神经化学正电子发射断层扫描 (PET)(Deserno、Huys 等人 2015 年、Westbrook、van den Bosch 等人 2020 年、Calabro、Montez 等人 2023 年)和特定基因型(Frank、Moustafa 等人 2007 年、Dreher、Kohn 等人 2009 年)。
摘要。自从第一个耦合模型对比项目版本6(CMIP6)模拟释放以来,讨论最多的主题之一是某些模型的有效气候灵敏度(EC)较高,与以前的CMIP相比,CMIP6中EC值的范围更高。对ECS的重要贡献是云气候反馈。尽管在过去的几十年中,气候模型一直在不断开发和改进,但云的现实代表仍然具有挑战性。云会导致建模的EC中的大型不确定性,因为云属性的预计变化和云反馈也取决于当前的模拟场。在这项研究中,我们研究了总共51 CMIP5和CMIP6模型的云物理和辐射特性的表示。ecs用作简单的指标来对模型进行分组,因为物理云对变暖的敏感性与云反馈密切相关,而云反馈又对EC有很大的贡献。在将来的情景模拟中,ECS组分析了云属性的预测变化。为了帮助解释预计的变化,还分析了历史模拟的模型结果。结果表明,净云辐射效应的差异是对三个模型组中变暖的反应的差异是由一系列云制度而不是单个区域的变化驱动的。在极地区域中,高ECS模型显示,由于变暖,云的净冷却效应的增加较弱,而不是低ECS模型。同时,高ECS模型显示出热带海洋和亚热带层流量区域的云冷却效果的下降,而低ECS模型的变化很小,甚至几乎没有变化。在南大洋上,低-ECS模型比高ECS模型对变暖的净云辐射效应具有更高的灵敏度。
代谢研究中的突破依赖于使用动物模型(通常是啮齿动物)的体内研究。评估啮齿动物中葡萄糖代谢是糖尿病研究的关键组成部分。尽管存在量化和解释葡萄糖代谢实验的一般指南,但这些准则正在不断发展。在这篇综述中,我们描述了目前用于评估大鼠和小鼠葡萄糖代谢的最常见的体内技术,以及使用此类技术时要考虑的因素。这篇综述的目的是两个方面:(i)强调啮齿动物中的最新发展以及解释代谢测试的结果以及(ii)从理论和实际角度提供啮齿动物中葡萄糖代谢方法的易于遵循的介绍。我们在
气候模拟始终显示到21世纪后期欧洲近地表空气温度的升高,尽管模型之间对近地表风速和辐照度的预测有所不同,并且伴随着较大的自然变异性。这些因素使估计物理气候变化对电力系统计划的影响很难。在这里,估计气候变化对未来的欧洲电力系统的影响。我们第一次展示了一组不同的未来电力系统场景如何导致到2050年欧洲总能源平衡(需求 - 可再生供应)的显着差异,这在与气候变化相关的不确定性(分别〜50%和〜5%)上占主导地位。但是,在任何给定的电力系统方案中,国家电力系统可能会受到气候变化的巨大影响,尤其是对于可再生资源之间的季节性差异(例如,风力发电可能会受到约20%或更多的影响)。在这些影响的时空模式方面,甚至在风和太阳能变化方向上,气候模型之间几乎没有一致的一致性。因此,需要更透彻地考虑气候不确定性,因为这对于强大的未来电力系统计划和设计可能非常重要。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
细菌的旁系敏感性 (CS) 是指抗生素抗性突变导致对另一种抗生素的敏感性,在治疗抗生素抗性病原体感染方面具有潜在的治疗用途。大肠杆菌中,先前已证明对庆大霉素 (GEN) 的 CS 存在于环丙沙星 (CIP) 抗性菌株中。为了研究潜在的突变,大肠杆菌 K-12 亚型 MG1655 种群进化为对 CIP 具有抗性,并测试了它们在 1 mg/L GEN 中的存活率。对进化菌株的 marR、acrR、soxR、gyrA 和 parC 基因进行测序,以检查每个终点种群的三个分离株中是否存在 CIP 抗性突变。为了进一步阐明哪些基因可能与对 GEN 的 CS 有关,构建了具有 marR、acrR、gyrA 和 parC 突变的菌株。在进化为对 CIP 具有抗性的 6 个种群中的 5/6 个中观察到了对 GEN 的 CS,但在构建的菌株中没有观察到。这表明 CIP 抗性可能使 CS 向 GEN 转变,但本研究未发现导致该转变的突变。来自同一群体的分离株之间的 CS 也存在很大差异。因此,本研究结果并未揭示 CIP 抗性大肠杆菌中 CS 向 GEN 转变的潜在机制,并引发了 CS 是否是一种可行的治疗策略的疑问。