In the intensive care unit (ICU), unresponsive patients with acute brain injury may retain a higher level of consciousness than apparent at the bedside. Our study highlights the utility of functional near - infrared spectroscopy (fNIRS), a portable optical neuroimaging device, for detecting the neural signatures of conscious processing. We identified resting - state networks, sensorimotor and auditory processing, and command - driven brain activity at the individual level in healthy participants. Moreover, we applied fNIRS to detect preserved consciousness in three severely brain - injured ICU patients and found that one patient had fully preserved awareness despite lacking behavioral signs of consciousness. Our study highlights the potential of fNIRS as a valuable tool for identifying hidden cognitive states in patients following serious brain injury.
Koselleck项目(2016 - 2023年) - 研究方案1:人造固定的神经生理和行为影响未发表的手稿,标题为“增强现实现实运动训练对固定者的感觉运动训练对感官运动功能和神经塑性的影响” G. Cohen和Herta Flor。子项目2:镜子训练对受伤足球运动员的影响(体育研究)未出版的文件,名为“ Studienplan_sportStudie_0531.pdf”。subroject 3:早期痴呆形式的感觉运动训练(MCI研究)Bekrater-Bodmann,R.,Löffler,A.,Silvoni,S.,Frölich,L.,Hausner,L.,Hausner,L.
本研究的目的是表征原型功能性近红外光谱 (fNIRS) 头带的性能,该头带旨在快速轻松地测量感觉运动皮层。事实上,fNIRS 非常适合人体工程学设计(即它们可以无线连接、对运动伪影具有相对的鲁棒性等特点),这导致了许多新型人体工程学 fNIRS 系统的最新实例;然而,fNIRS 测量的光学性质对测量头部毛发部分下方的大脑区域提出了固有的挑战。正是由于这个原因,迄今为止开发的大多数人体工程学 fNIRS 系统都以前额叶皮层为目标。在本研究中,我们比较了新型便携式 fNIRS 头带与固定式全头罩 fNIRS 系统的性能,以测量 50 岁以上健康个体在简单的上肢和下肢任务中的感觉运动活动。两种 fNIRS 系统均在上肢和下肢任务中表现出预期的血流动力学活动模式,并且两种系统之间的对比度与噪声比的比较表明,原型 fNIRS 头带在检测这些任务期间感觉运动皮层生理反应的能力方面并不逊色于全头罩 fNIRS 系统。这些结果表明,使用无线和无光纤 fNIRS 设计在感觉运动皮层进行测量是可行的。
约瑟夫·T·弗朗西斯于 1994 年毕业于纽约州立大学布法罗分校生物学荣誉课程。随后,他在华盛顿特区的乔治华盛顿大学研究神经动力学,重点研究应用于神经系统的非线性动态系统理论以及触觉相互作用,并于 2000 年获得博士学位。他曾两次获得博士后奖学金,第一次是在约翰霍普金斯大学 Reza Shadmehr 的指导下研究计算感觉运动控制和学习。随后,他在纽约州立大学唐斯泰特分校与 John Chapin 一起研究感觉运动脑机接口,后来他在那里担任教职。2015 年,弗朗西斯教授转到休斯顿大学,担任生物医学工程系和电气与计算机工程系教授。
每个人的运动是通过感觉运动和社会文化因素之间不断相互作用来雕刻的。一个基于运动控制机制的理论框架表达了社会文化和生物学信号目前如何融合到形状运动的方式。在这里,我们为民族动力学新兴领域提供了一个框架,旨在提供概念空间和词汇量,以帮助在此交叉路口将研究人员聚集在一起。我们提供了一种第一级模式,用于产生和测试关于跨文化运动变化的丰富观察以及神经生理学和运动的生物力学说明之间桥梁差距的文化差异的假设。我们明确解离了确定文化相关运动的两个相互作用的反馈回路:一个由身体内部神经信号调节的感觉运动任务,另一个是通过在环境中产生生态后果的环境中产生的治疗生态任务。一个关键思想是神经系统中个人特异性和文化影响的运动概念的出现,感觉运动和生态任务空间之间的低维功能映射。电动机的口音来自文化环境中运动概念拓扑的感知差异。我们将框架应用于三个例子:语音,步态和掌握。最后,我们讨论了民族生物学研究如何为个性化的运动技能培训和康复提供信息,并挑战前进。本文是主题问题的一部分,“运动中的思想:人工智能时代的体现认知”。
当人们相互交流时,他们的大脑会同步。然而,目前尚不清楚脑间同步 (IBS) 是否在功能上与社交互动相关,或源于个体大脑接触相同的感觉运动信息。为了理清这些观点,当前的双脑电图研究调查了钢琴家联合演奏二重奏时基于振幅的 IBS,二重奏包含一个静默停顿,然后是节奏变化。首先,我们操纵预期节奏变化的相似性,并在停顿期间测量 IBS,从而捕捉到纯内源性时间计划的对齐,而没有声音或运动。值得注意的是,当伴侣计划相似的节奏时,右后伽马 IBS 更高,它可以预测伴侣的节奏在停顿后是否匹配,并且它只在真实情况下受到调节,而不是在替代对中受到调节。其次,我们操纵了对伴侣动作的熟悉程度,并在有声音的联合表演期间测量了 IBS。尽管感觉运动信息在不同条件下相似,但当伴侣不熟悉对方的部分并且必须更密切地关注表演的声音时,γ-IBS 更高。这些综合研究结果表明,IBS 不仅仅是共享感觉运动信息的附带现象,而且还可能取决于对行为同步和成功的社交互动至关重要的内源性认知过程。
智能机器人系统和脑机接口 (BMI) 的进步帮助患有感觉运动障碍的个体恢复了功能和独立性;然而,由于通过用户输入以协调的方式控制多个肢体的多个自由度 (DOF) 的技术复杂性,需要双手协调和精细操作的任务仍然未得到解决。为了应对这一挑战,我们实施了一种协作共享控制策略来操纵和协调两个模块化假肢 (MPL) 以执行双手自我进食任务。一位在感觉运动大脑区域有微电极阵列的人类参与者向两个 MPL 发出命令来执行自我进食任务,其中包括双手切割。从双侧神经信号解码运动命令,以一次控制每个 MPL 上的最多两个 DOF。共享控制策略使参与者能够将其四自由度控制输入(每只手两个)映射到多达 12 个 DOF,以指定机器人末端执行器的位置和方向。通过使用神经驱动的共享控制,参与者成功同时控制了两个机械肢体的运动,从而在复杂的双手自主进食任务中切开和进食食物。通过 BMI 与智能机器人行为协作实现的双手机器人系统控制的演示对于恢复感觉运动障碍患者的复杂运动行为具有重要意义。
每个人的运动是通过感觉运动和社会文化因素之间不断相互作用来雕刻的。一个基于运动控制机制的理论框架表达了社会文化和生物学信号目前如何融合到形状运动的方式。在这里,我们为民族动力学新兴领域提供了一个框架,旨在提供概念空间和词汇量,以帮助在此交叉路口将研究人员聚集在一起。我们提供了一种第一级模式,用于产生和测试关于跨文化运动变化的丰富观察以及神经生理学和运动的生物力学说明之间桥梁差距的文化差异的假设。我们明确解离了确定文化相关运动的两个相互作用的反馈回路:一个由身体内部神经信号调节的感觉运动任务,另一个是通过在环境中产生生态后果的环境中产生的治疗生态任务。一个关键思想是神经系统中个人特异性和文化影响的运动概念的出现,感觉运动和生态任务空间之间的低维功能映射。电动机的口音来自文化环境中运动概念拓扑的感知差异。我们将框架应用于三个例子:语音,步态和掌握。最后,我们讨论了民族生物学研究如何为个性化的运动技能培训和康复提供信息,并挑战前进。本文是主题问题的一部分,“运动中的思想:人工智能时代的体现认知”。