人类的方法可以通过使用户成为控制循环的积极部分来大大增强人类 - 机器人的交互,后者可以向机器人提供反馈以增强其功能。在所有安全性的情况下,例如在辅助机器人技术中,这种反馈变得更加重要。这项研究旨在实现一种人类的方法,在该方法中,人类可以向特定机器人(即智能轮椅)提供反馈,以增强其人工感官套装,扩展并提高其检测和避免障碍的能力。反馈由键盘和大脑 - 计算机接口提供:在此范围内,工作还包括一个协议设计阶段,以引起和唤起人脑事件 - 相关潜力。整个体系结构已在模拟机器人环境中得到验证,并从不同的测试对象获得了脑电图信号。
方法” 首席研究员:Vania Broccoli 博士 - CNR-米兰神经科学研究所 - IRCCS Ospedale San Raffaele,米兰 弗里德赖希共济失调 (FA) 是一种遗传性神经退行性疾病,导致步态和肢体进行性共济失调、构音障碍、腱反射丧失、锥体征和脊柱侧弯,并伴有心肌病和糖尿病。在某些情况下,患者会出现听力障碍和因视神经萎缩导致的视力严重丧失。关于这种疾病病理机制的大部分研究都集中在小脑和背神经节感觉神经元的退化。人们对视觉功能障碍和视网膜神经元退化的根本原因知之甚少。 我们的小组从 2 名患有中度或重度 AF 神经症状的患者体内生成了重编程干细胞 (iPSC),这 2 名患者分别因 Frataxin 基因中 GAA 性状的短暂或较大扩增而引起。在这个项目中,iPSC 细胞将分化为视网膜、感觉背神经节和大脑皮层的神经元,以研究细胞和线粒体的病理变化。通过比较分析,我们可以了解不同神经元类别中病理过程的进展和动态,这些神经元类别对 Frataxin 基因的失活更敏感(背神经节感觉神经元和视网膜神经元)或更抗性(大脑皮层神经元)。该项目的第二部分旨在利用 Cas9 蛋白生成“基因编辑”系统,目的是通过表观遗传机制重新激活沉默的 Frataxin 基因。通过这种方式,可以去除沉默基因的染色质修饰,诱导其启动子的重新激活和基因的重新表达。这种策略的优势在于,它能够以自身水平的表达激活内源基因,从而避免传统基因治疗方法中可能出现的基因过度表达引起的副作用。该系统的有效性将通过在患者成纤维细胞和疾病小鼠模型中重新激活 Frataxin 基因的能力来评估。还将研究 Frataxin 重新激活是否能够恢复以及在多大程度上恢复患者 iPSC 中存在的细胞和线粒体缺陷。该项目旨在通过使用患者干细胞生成受疾病不同影响的各类神经元,获得有关 FA 病理机制的新知识。此外,还将开发新的分子工具,可用于重新激活疾病中沉默的 Frataxin 基因,从而成为 AF 的新精准医疗治疗选择。 Tipo Ricerca:工作室预临床 Costo globale del Progetto 320.000 €,持续时间 2 anni(2022 年 4 月 – 2024 年 4 月)
我们探索了各种感官刺激技术在睡眠和梦境工程领域的应用。我们首先强调身体在梦境生成中的因果作用,并描述睡眠身体和做梦思维之间的回路。我们认为几乎任何感官刺激都有可能调节睡眠体验。考虑到其他可能提供在模拟世界中设计感官内容的工具的领域,我们转向虚拟现实 (VR)。我们概述了一系列相关的 VR 技术,包括旨在刺激触觉、温度、前庭、嗅觉和听觉的设备。我们相信,这些技术是为了高移动性和低成本而开发的,可以转化为梦境工程领域。最后,我们讨论了该领域未来可能的发展方向,以及有针对性的梦境指导和睡眠操纵可行的世界的伦理问题。
食物的恶化通常是微生物生长和脂质氧化的组合,这两个过程都可以通过感官评估(外乡)同时捕获。在有氧条件下储存的器官肉的变质由于氧气的可用性而在表面上发展起来。恶化过程并不总是均匀分布在器官肉的整个表面上。因此,感官架子寿命测试的样品呈现至关重要,因为它可能会影响属性的强度等级。
摘要 - 如今,机器人辅助手术培训越来越依赖于基于计算机的模拟。但是,这种培训技术的应用仍仅限于实践培训的早期阶段。为扩大模拟器的实用性,最近研究了多感官反馈增强。本研究旨在将视觉和触觉域中的初始预测(指导)和随后的基于错误的基于错误(反馈)训练增强结合起来。32名参与者通过使用DA Vinci Research套件的外科医生控制台进行了30项虚拟现实任务的重复。这些受训者被随机且平均分为四组:一组没有训练增强,而其他小组分别进行了视觉,触觉和视觉狂热的增强。结果表明,在所有实验组的对照组的任务完成功能中,最初是由指南引入的显着改进。在准确性方面,实验组在训练结束时表现优于对照组。特定的视觉引导和触觉反馈在误差减少中起着重要作用。对长期学习的进一步研究可以更好地描述这些感觉域中的指导和反馈的最佳组合。
摘要 体感皮层的微刺激可引发人工触觉感知,并可纳入双向脑机接口 (BCI) 以恢复受伤或患病后的功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入两名颈脊髓损伤人类参与者体感皮层的微电极阵列进行刺激,并改变刺激幅度、频率和刺激序列持续时间。增加幅度和刺激序列持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引发更强烈的感知,但在其他电极上引发的感知强度较低。这些不同的频率-强度关系分为三组,它们在不同的刺激频率下也会引起不同的感知质量。相邻的电极位置更有可能属于同一组。这些结果支持了刺激频率直接控制触觉感知的想法,并且这些不同的感知可能与体感皮层的组织有关,这将有助于双向 BCI 刺激策略的原则性发展。
通讯作者:Sandra J. Kuhlman,电子邮件:skuhlman@cmu.edu 附属机构 1 卡内基梅隆大学生物医学工程系,2 认知神经基础中心,3 神经科学研究所,4 生物科学系 摘要 获得新技能可能会扰乱现有的网络功能。为了直接评估先前获得的皮质功能是否在学习过程中发生改变,使用耦合到初级视觉皮层 (V1) 神经元的光学脑机接口设备对小鼠进行抽象任务训练,其中选定的活动模式会得到奖励。使用双光子钙成像纵向记录兴奋性神经元。尽管在执行任务期间局部神经活动发生了显著变化,但在训练环境之外评估的调节特性和刺激编码并未受到干扰。同样,在不同的视觉辨别训练任务后保持反应的神经元中的刺激调节是稳定的。然而,视觉辨别训练增加了表征漂移的速度。我们的结果表明,虽然某些形式的感知学习可能会改变单个神经元对刺激编码的贡献,但新技能学习本质上并不会破坏成人 V1 中刺激表征的质量。
摘要 综述目的 本综述旨在强调与仿生肢体和体感反馈恢复相关的多感觉整合过程日益增长的重要性。 最新发现 通过神经刺激恢复准现实感觉已被证明可为肢体截肢者带来功能和运动益处。近期,与人工触觉相关的认知过程似乎在假肢的完全整合和接受中发挥着至关重要的作用。 摘要 仿生肢体中实现的人工感觉反馈增强了截肢者对假肢的认知整合。多感觉体验是可以测量的,必须在设计新型体感神经假体时予以考虑,其目标是为假肢使用者提供逼真的感觉体验。正确整合这些感觉信号将保证更高水平的认知益处,从而实现更好的假肢并减少感知到的肢体扭曲。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2022 年 3 月 28 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
a 意大利帕多瓦大学哲学、社会学、教育学和应用心理学系 b 西班牙巴利亚多利德大学生物医学工程组 c 西班牙巴利亚多利德生物工程、生物材料和纳米医学研究中心 (CIBER-BBN) d 上海复旦大学华山医院麻醉科 e 上海复旦大学华山医院神经外科 f 加拿大西安大略大学脑与思维研究所、生理学和药理学系和心理学系 g 美国密歇根大学医学院麻醉学系意识科学中心 h 德国图宾根马克斯普朗克智能系统研究所实证推断系 i 德国图宾根赫蒂临床脑研究所神经病学系 j 研究组奥地利维也纳大学计算机科学学院神经信息学 k 加拿大渥太华大学心理健康研究所