。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2024年1月23日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.01.23.576835 doi:Biorxiv Preprint
社会交流中的非典型性,受限制和重复的行为或兴趣是自闭症谱系障碍(ASD)的主要特征,如《精神障碍诊断和统计手册》中所述,第五版(DSM-5),由美国精神病学协会(APA)发表。这种情况伴随着多种感觉特征,而DSM-5则表明,在ASD患者中,经常观察到对感觉刺激的过度或受限反应(分别为敏感性和低敏敏度)。在ASD患者中的感觉问题,例如超敏反应和低敏性,不是次要的问题,而是指向该疾病核心的重要因素,因为其中一些感觉特征直接降低了个体的生活质量[QOL; QOL; (1)]。此外,有可能在ASD和通常发育中的个体之间的感觉处理之间的差异可能会导致通信方法中的差异(2,3)。
人类作为食物的“美味”所经历的因素包括与食物本身(例如,风味,香气,食物质地)和人为因素(生理和心理因素,生理和心理因素,饮食习惯,外部因素)相关的因素,但是由于食物的评估是一种重要的食物,因此对美味的食物的看法很大一部分,因此,食物的评价是一种重要的食物。评估食物纹理的方法可以分为感官评估,其中人类受试者在食用时评估食物的“口感”,并评估物理(机械)特性,例如使用仪器的食物硬度。口感通常是通过感觉测试评估的,但是由于人类感官的个体差异和受试者的身体状况而引起的评估结果的难度是感觉测试的问题。因此,为了获得客观结果,进行了使用仪器进行测量。作为纹理的代表性机械性能,图1显示了Szczesniak提出的纹理曲线。尽管纹理曲线使得可以评估食物的基本口感,但很难测量更复杂的口感特征。在上一个报告1)中,通过多变量分析预测了各种样本饼干的硬度,脆度和湿润。为了考虑cookie本身的变化,使用从纹理测试中获得的每种类型的cookie的机械性能的平均值进行预测。本文使用大量的解释变量2)介绍了一个cookie的感觉评估值的预测示例。与上一份报告中一样,本实验中的目标感官评估项目是硬度,脆度和湿度,纹理测试的测量数据也相同。
在美国,每天有近 60,000 例手术使用全身麻醉(Brown、Lydic 和 Schiff,2010 年)。全身麻醉的一个关键组成部分是无意识,在此期间患者不知道自己所处的环境(Brown 等人,2010 年)。当无法实现这一目标时,就会出现术中意识(Ghoneim,2000 年)。虽然这种现象很少见(Sebel 等人,2004 年),但经历过这种现象的患者报告称,他们受到了严重的创伤(Kotsovolis 和 Komninos,2009 年)。大多数关于麻醉对大脑影响的研究都集中在生理状态变化上。然而,如果我们要了解麻醉如何导致无意识以及麻醉在术中意识中是如何失效的,我们需要了解麻醉对感觉输入处理的影响。我们打算使用最常用的麻醉剂之一异丙酚来做到这一点。丙泊酚是一种 γ-氨基丁酸激动剂(Hemmings 等人,2005 年,2019 年;Bai、Pennefather、MacDonald 和 Orser,1999 年)。尽管丙泊酚的分子作用机制已被充分理解(Sahinovic、Struys 和 Absalom,2018 年),但我们对其在功能网络层面的作用机制了解较少(Lewis 等人,2012 年,2013 年;Purdon 等人,2013 年;Brown、Purdon 和 Van Dort,2011 年)。丙泊酚诱导慢振荡总体增加
在生物体验系统中,信息的感知,转移和处理依赖于分布的平行神经网络来有效解决复杂而非结构化的现实世界问题。1,2,例如,Tac-Tile感觉与机械信号转换为机械感受器的电信号有关。3然后这些电信号通过神经纤维流动到拟南芥,诱导神经递质的释放和突触后膜的发射,最后将它们传递到大脑中以形成触觉。神经编码和学习是在协作和处理外部信息的过程中进行的。受到生物系统的启发,已经开发出神经形态电子来重建和增强智能功能,4
有人提出,大脑使用概率生成模型来最佳地解释感官信息。这一假设已在不同框架中形式化,重点是解释不同的现象。一方面,经典预测编码理论提出了如何通过采用局部突触可塑性的神经元网络来学习概率模型。另一方面,神经采样理论已经证明了随机动力学如何使神经回路能够表示环境潜在状态的后验分布。这些框架通过变分过滤结合在一起,将神经采样引入预测编码。在这里,我们考虑一种用于静态输入的变分过滤变体,我们将其称为蒙特卡罗预测编码 (MCPC)。我们证明,预测编码与神经采样的结合会产生一个使用局部计算和可塑性学习精确生成模型的神经网络。MCPC 的神经动力学在存在感官输入的情况下推断潜在状态的后验分布,并可以在没有感官输入的情况下生成可能的输入。此外,MCPC 还捕捉了感知任务期间神经活动变化的实验观察结果。通过结合预测编码和神经采样,MCPC 可以解释之前由这些单独框架解释的两组神经数据。
抽象背景和瞄准迷走神经神经上迷走神经元介导的内脏器官脑轴是维持各种生理功能至关重要的。在这项研究中,我们研究了肥胖条件下小鼠的能量平衡,肝脂肪变性和焦虑行为的影响。我们对神经肝脏的迷走神经元进行了单核RNA测序。基于我们的snRNA-seq结果,我们使用了Avil Creert2菌株来识别神经化肝脏的迷走神经感觉神经元。导致一小部分支配肝脏的多峰值感觉神经元位于左和右神经节中,集中于soltraius,区域postrema和Vagus的背运动核的核,并在肝脏周围的周围区域。雄性和雌性对照小鼠在高脂饮食喂养过程中发展了饮食诱导的肥胖症(DIO)。删除肝脏预测的Advillin阳性迷走性感觉神经元可阻止雄性和雌性小鼠的DIO,并且这些结果与能量消耗增加有关。尽管在肝脏预测的迷走性感觉神经元破坏后,雄性和女性表现出改善的葡萄糖稳态,但只有雄性小鼠才显示出胰岛素敏感性提高。失去肝脏的迷走性感觉神经元限制了喂养脂肪源性饮食的雄性和雌性小鼠肝脂肪变性的进展。最后,与对照小鼠相比,缺乏肝脏迷走性感觉神经元的小鼠表现出焦虑样的行为。结论肝脑轴有助于调节能量平衡,葡萄糖耐受性,肝脂肪变性和焦虑行为,具体取决于健康和迷恋条件下的营养状况。关键字:焦虑,神经回路,感觉,迷走液,脂肪肝
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月29日发布。 https://doi.org/10.1101/2023.02.17.528958 doi:Biorxiv Preprint
图2幼虫SEZ的感觉域:长度截面视图。(a,b)幼虫晚期SEZ的示意性侧面视图(a)和腹侧视图(b)。感觉隔室的颜色编码如(a)底部的钥匙所述。进入神经胶质的神经是阴影灰色的;神经组边界和柱状神经胶质结构域由孵化线表示。(c - e)用PEB-GAL4> UAS-MCD8-GFP(绿色;感觉轴突)标记的第三龄幼虫标本的共聚焦部分的Z-Projections。抗神经毒素(洋红色)标记次生谱系和区域; Neuropil在所有面板中均由抗DN-钙粘蛋白(蓝色)标记。(c)中央神经胶质结构域的副臂板z预测。(d,e)表面水平的水平投影(d;神经皮腹面上方约10米)和中央水平(E;腹表面上方约20 l m;参见面板H)。孵化的线划分柱神经型结构域的边界,如随附的纸张所定义(Hartenstein等,2017)。在PEB-GAL4阳性区域的(E)点中的箭头从CSC感觉域继续向前向中央trito-Cerebrum前进; (e)中的箭头指示通过触角神经进入的感觉传入,然后绕过触角(Al)到达tritoceRebrum。(f,g)。第三龄幼虫SEZ晚期的副臂切片(F)和数字旋转的额叶(G)的Z-projctions显示了PEB-GAL4阳性感觉末端(绿色)和纵向轴突段与Anti-Fasticlin II(Magenta)标记的纵向轴突。绿色孵化线表示(d)和(e)中显示的水平平面。(H)幼虫SEZ的示意性横向视图,说明了该图和图3中的面板(d,e)中显示的Z射击平面。Blue hatched lines, oriented perpendicularly to the neuraxis and roughly parallel to neuromere boundaries (grey hatched lines), represent frontal planes at level of anterior half of prothoracic segment (T1ant), posterior half of prothoracic segment (T1post), tritocerebrum (TR), mandibula (MD), maxilla (MX), and labium (lb),图3的面板(a - f)中显示。bar:25 L m(c - g)
大多数关于非人类物种中脑部和行为侧向的大多数研究是针对成年人进行的,但是关于家雏鸡的横向化研究是一个例外。由于禽类胚胎在鸡蛋中发育,因此可以操纵它们的球架和既有后的既有既容易了,远比哺乳动物可以实现的感觉更容易。因此,小鸡(加勒斯·加鲁斯)已成为阐明遗传和表观遗传学对侧向大脑和行为发展的模型。类似的研究表观遗传影响对偏侧化发展的影响适用于其他禽类,尽管到目前为止,鸽子和鹌鹑是这方面研究的唯一其他鸟类(Quail,Casey and Sleigh,2014年; Harshaw等人; Harshaw等人。,2021; Pigeon,Güntürkün和Ocklenburg,2017年; Letzner等。,2017年)。实际上,诸如小鸡和鹌鹑之类的早熟鸟类具有非凡的属性,以帮助发展。在孵化之前和之后,它们都经过许多不同的阶段,每个阶段都非常分开,持续时间很短。这些阶段可以分别拦截和操纵,也可以按顺序截断,以揭示孵化后的行为结果,从而可以研究感觉体验对脑功能的影响。
