7KH 6WDQIRUG ,QVWLWXWH IRU +XPDQ &HQWHUHG $UWLILFLDO ,QWHOOLJHQFH +$, RIIHUV WKH IROORZLQJ VXEPLVVLRQ IRU FRQVLGHUDWLRQ LQ UHVSRQVH WR WKH 5HTXHVW IRU ,QIRUPDWLRQ 5), E\ WKH :KLWH +RXVH 2IILFH RI 6FLHQFH DQG 7HFKQRORJ\ RQ SXEOLF DQG SULYDWH VHFWRU XVHV RI ELRPHWULF WHFKQRORJLHV :KLOH RXU LQWHQWLRQ ZLWK WKLV UHVSRQVH LV WR H[DPLQH WKH XVHV RI ELRPHWULF WHFKQRORJLHV DV SHU WKH 5), ZH DOVR WDNH WKH LPSOLFDWLRQV RI EURDGHU DUWLILFLDO LQWHOOLJHQFH $, WHFKQRORJLHV LQWR FRQVLGHUDWLRQ %LRPHWULFV DQG $, DUH XQLTXHO\ LQWHUWZLQHG :H FDQ GHFRXSOH WKHVH WZR WHFKQRORJLHV RQO\ WR DQ H[WHQW DQG PXVW XQGHUVWDQG ERWK WKH IXOO LPSDFWV RI $, DQG KRZ WKH ELRPHWULF SDUDGLJP GLVSURSRUWLRQDWHO\ DIIHFWV : PDUJLQDOL]HG JURXSV DQG H[DFHUEDWHV LQHTXLWLHV )ROORZLQJ 'U (ULF /DQGHU DQG 'U $ORQGUD 1HOVRQ¶V UHFHQW FDOO IRU D ELOO RI ULJKWV WR VDIHJXDUG WKH $PHULFDQ SXEOLF DJDLQVW SRZHUIXO WHFKQRORJLHV LQ DQ RSLQLRQ SLHFH IRU :LUHG ZH
本期特刊聚焦“储能技术的挑战与可能性”,收录了来自德国伊尔默瑙工业大学、苏州大学、中科院半导体研究所、西湖大学、华中科技大学、北京交通大学、南京大学等单位的9篇综述、1篇研究论文和1篇新闻观点,介绍了国内外在该领域的最新进展。伊尔默瑙工业大学雷勇教授题为“高粗糙表面碳纳米纤维薄膜作为锂硫电池有效中间层”的原创研究论文、苏州大学康振辉教授题为“I–III–VI族量子点的光电和光催化特性:传统量子点与新兴量子点之间的桥梁”的评论论文、中科院半导体研究所王志杰教授题为“设计ZnO光电化学行为以实现高效太阳能水分解”的评论论文、舒大军教授题为“应变工程调控光催化材料TiO2表面性质”的评论论文详细介绍了该材料在储能等领域的挑战与可能性。
按会议 24-44 列出的海报标题 2017 年计划委员会:Suzanne Shu(主席)、Nina Mažar、Oleg Urminsky、Daniel Oppenheimer 感谢:Kate Wessels 和 Kaye de Kruif(会议协调员)、Jon Baron(网站管理员)、Rick Larrick(主席)、Bettina von Helversen(社交活动)、Dan Schley(学生海报奖)以及特邀审阅者:On Amir、Kirstin Appelt、Peter Ayton、Jon Baron、Alison Brooks、Katherine Burson、Shoham Choshen-Hillel、Hengchen Dai、Clintin Davis-Stober、Mike DeKay、Bart deLanghe、Jordan Etkin、Barbara Fasolo、Daniel Feiler、Geoff Fisher、Ana Franco- Watkins、Linnea Gandhi、Dan Goldstein、Crystal Hall、Stefan Herzog、Alex Imas、Yoel Inbar、Leslie约翰、艾丝特·考夫曼、艾玛·莱文、叶莉、李萌、尼娜·马扎尔、克雷格·麦肯齐、凯蒂·米尔克曼、朱莉娅·明森、西蒙·莫兰、丹尼·奥本海默、托尔斯滕·帕彻、德文·波普、克里斯托·雷克、亚历克斯·里斯-琼斯、简·里森、托德·罗杰斯、戴尔·鲁德、丹·施利、托马斯·舒尔茨、珍妮特·施瓦茨、黛博拉·斯莫尔、杰克·索尔、史蒂芬斯皮勒、奥列格·乌明斯基、贝蒂娜·冯·赫尔沃森和伊丽莎白·韦伯。
Español(西班牙):Al-uinmero Indiba的Ann-As是Gratuitos de Assiss de De Assiss de de Assiss de de Assiss de Assiss de deLingerística。BADV流。 keepa䫔中文(中文):打上perai'agọisốiẇnthoạittrênBath -ane(cready):Tr£,언언원沙漠섊抚养섊对她的年轻人提出来。Tagaloge(Tigalog -Philippo):该领域中没有数字,因此我们有一个塞尔维斯科,带有塞尔维西派,带有Wika Serbisyo,带有Wikan Serbisyo和Wika Swikan Swikan Swift Swanm。houl theour,youhinouhinouhouthyouhou,在Facebook上的页面CreyòlAyisen(法国克里奥尔语):PASS PIW PI返回A,POU RESEVWA电视Y Lang Shu。français(法语):Applez by Applez by ci-desus ci-desus ci-desus ci-desus ci desus dessiTsemitque d'adide d'Adide d'Adide。Polski(波兰):AbyScorestaćZbezpłłłvoutnejpomocy h。português(portusese):liguee onúmeroacima Indigado服务的加入Gáths。意大利(Dealian):小酬金linasistanza中每个servizi ricevery的数字女sopra的chiamare。deutsch(德语):wählensie dieth angebene nummer,hilfsdientleist的um consolose zu zufsdistleist。
视觉方式是当前连续情绪识别方法的最主要方式之一。与脑电图的内在限制(如受试者偏置和低空间分辨率)相比,脑电图的声音相对较小。这项工作试图通过使用视觉模态的黑暗知识来改善脑电图模式的持续预测。教师模型是由级联卷积神经网络建立的 - 时间卷积网络(CNN -TCN)体系结构,学生模型由TCN构建。它们分别由视频框架和EEG平均频带功率功能馈送。采用了两个数据分配方案,即试验级随机shu ffl ing(TRS)和剩余的受试者(LOSO)。独立的老师和学生可以产生优于基线方法的连续预测,而视觉到EEG跨模式KD的使用进一步改善了统计学意义的预测,即p-value <0。01对于TRS和P值<0。05用于LOSO分区。受过训练的学生模型的显着性图表明,与活动价状态相关的大脑区域不在精确的大脑区域。相反,它是由于各个大脑区域之间的同步活动而引起的。和快速β和伽马波的频率为18-30 Hz和30-45 Hz,对人类的情感过程贡献最大。该代码可在https://github.com/sucv/visual _ to _ eeg _ cross _ modal _ kd _ for _ cer上获得。
视觉模态是当前连续情绪识别方法中最主要的模态之一。与视觉模态相比,EEG 模态由于其固有的局限性(例如主体偏见和低空间分辨率)而相对不太可靠。这项工作尝试利用来自视觉模态的暗知识来改善 EEG 模态的连续预测。教师模型由级联卷积神经网络-时间卷积网络 (CNN-TCN) 架构构建,学生模型由 TCN 构建。它们分别由视频帧和 EEG 平均频带功率特征输入。采用两种数据划分方案,即试验级随机分流 (TRS) 和留一主体剔除 (LOSO)。独立的老师和学生可以产生优于基线方法的连续预测,并且使用视觉到 EEG 跨模态 KD 进一步改善了预测,具有统计显著性,即 TRS 的 p 值 < 0.01 和 p 值 < 0。 05 用于 LOSO 分区。训练后的学生模型的显着性图显示,与活跃价态相关的大脑区域并不位于精确的大脑区域。相反,它来自各个大脑区域之间的同步活动。与其他波段相比,频率为 18 − 30 Hz 和 30 − 45 Hz 的快速 beta 和 gamma 波对人类情绪过程的贡献最大。代码可在 https://github.com/sucv/Visual _ to _ EEG _ Cross _ Modal _ KD _ for _ CER 获得。
Prabhjot S. Mundi*,1,0,Philemon S. Dela Cruz*,2,Adina Grunn 1,Daniel Diolaiti 2,Audrey Mauguen 3,Allison R. Rainey 2,Kristina C. Guillan 2,Armaan Siddique 2,Daoqi 2,Daoqi You 2,Dao You 2,Ronald Realubit 1,Ronald Realubit 1,Charles Karan Karan 1,0,000,Michael surine,Michael v.2。 0,弗朗西斯·布罗根(Frances Brogan)0,杰弗里·布鲁斯(Jeffrey N. Reisl 11,Nicole Lamanna 0.4,Andrew Lassman 0.10,Emerson Lim 0.4,Gulam A. Manji 0.4,Guy McKhann 0.5。 ,Sven 0.7,Jason D. Wright 0.9,Hanina Hibshoosh 0.14,Kevin Kalinsky 15,Mahalaxmi Aburi 1,Peter A. Sims 1.16,Mariano J. Alvarez#,1,17,Andrew L. Kung#,2,2和Andrea Califano#,Andrea Califano#,1,16,16,16,16,16,16,16,19。 * 这些作者做出了同等贡献
建议引用引用引文Negrao,Marcelo V; Araujo,Haniel A; Lamberti,朱塞佩;库珀(Alissa J); Akhave,尼尔S;周,滕;卢克(Delasos),卢克(Luke);希克斯(J Kevin); Mihaela Aldea; Minuti,Gabriele;海因斯,雅各比; Aredo,Jacqueline V;丹尼斯,迈克尔·J; Turja的Chakrabarti;斯科特,苏珊C; Bironzo,Paolo; Scheffler,Matthias; Christopoulos,Petros; Stenzinger,阿尔布雷希特;瑞斯(Ries),乔纳森(Jonathan W);金,所以Yeon; Goldberg,Sarah B; Li,Mingjia;王,气;清,Yun; ni,ying;做,Minh Truong;李,理查德;里奇蒂,生活; Aless,Joao Victor;王,王;尊敬,bley;洛伦扎·兰迪; Tseng,Shu-Chi; Nishino,Mizuki; Digumarthy,Subba R; Rinsurirangkakong,Waree; Rinksurongkaw,Vadeerat; Vaporciyan,Ara Ara; Blumenschein,George R;张,江;欧文,德怀特H; Blakely,Collin M;吉安尼斯山; Shu,Catherine A; Bestvina,Christine M;加拉西斯,玛丽娜·奇亚拉(Marina Chiara); Marrone,克里斯汀·A;格雷,贾纳尔·E;帕特尔(Patel),桑迪普·普拉文(Sandip Pravin);卡明斯,艾米·L; Wakelee,Heather A;狼,尤尔根; Scagliotti,Giorgio Vittorio;费德里科·卡普佐(Cappuzzo); Barlesi,Fabrice;桶,松鼠D; Drussky,Leylah;吉本斯,唐·L; Mericbernsam,Funda; Lee,J Jack; Heymach,John V;洪,大卫S;抢劫,丽贝卡(Rebecca); Awad,Mark M;以及Skoulis,Ferdinandos,“高级NSCLC中的合作和KRASG12C抑制剂疗效”(2023年)。教职员工和学生出版物。1423。https:// distalCommons
在克里斯·詹姆斯(Chris James)的协调下,由OECD卫生部门准备了2023年的健康。第1章由Chris James,Pauline Front和Gabriel与Palaantino编写;埃里克·萨瑟兰(Eric Sutherland),瑞舒布·基拉(Rishub Keelra)和Yukiko Shu的第2章;第三章Gabriel,Tom Raitzik Zonenschein,Jonna Krajewska和Doron Wijker;第4章Marion Devaux,Pauline Faron,Antoine Penpenic和Elena Suzuki;第5章Chris James,GaëlleBastatat,Marie-ClémenceCanaud,Pauline Front,Michael Mueller,Caroline Berchet和Rishub Keelara;第六章Rie Fujisa,Pauline Fairon,Joana Krajewska,Kadri-Ann Kallas,Gabriel Dirrain,Niicin Dagistan,Melanie Steenjes,Candan Kendir和David Morgan;第7章Caroline Penn,Paul Lukong,Michael Mueler,Luca Lorenzoni和David Morgan;第8章Gaetan Lafortune,GaëlleBastatat,Marie-ClémenceCanaud和Gabriel与Paolontonio;第9章Suzannah Chapman,Lisbeth Wagstein,Rishub Keelra,Paul Lukong,Michael Mueller和ValérieParis;第10章Elena Suzuki,Lisbeth Wagstein,Gabriel Di Gabriel Di Paolantonio,Milstein Ricarda,Michael Mueller,Jose Carlos Ortega Regalado和Paola Sillitti。本出版物中使用的OECD数据库由GaëlleBastatat,Marie-ClémenceCanaud,Gabriel Di Gabriel Di Rie Fujisa,David Morgan和Michael Mueller管理。该出版物也受益于Francesca Colombo,Mark Pearson和Stefano Scarpetta的评论。Mare-ClémenceCanaud,Lucy Hulett和Lydia Wanstal提供了编辑援助。
[1] H.-K。 Mao,B。Chen,J。Chen,K。Li,J.-F。 Lin,W。Yang和H. Zheng,《高压科学技术》的最新进展,Matter Radiat。极端1,59(2016)。[2] C. Buzea和K. Robbie,组装了超导元素的难题:评论,超级跟踪。SCI。 技术。 18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。SCI。技术。18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。18,R1(2004)。[3] J.Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。修订版Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。121,037004(2018)。[4] J. Hamlin,高压高金属元素的超导性,物理。c(阿姆斯特丹,内斯。)514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。514,59(2015)。[5] C. Zhang,X。He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。社区。13,5411(2022)。[6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。修订版b 105,224511(2022)。[7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。修订版Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。130,256002(2023)。修订版b 83,220512(2011)。修订版b 78(2008)。极端5,038101(2020)。[8] M. Sakata,Y。Nakamoto,K。Shimizu,T。Matsuoka和Y. Ohishi,在216 GPA的压力下,CA-VII的超导状态低于29 K的临界温度。[9] M. Debessai,J。J。Hamlin和J. S. Schilling,Trivalentd-Electron超导体SC,Y,LA和LU中TC的压力依赖性的比较与Megabar压力,物理。[10] E. Gregoryanz,C。Ji,P。Dalladay-Simpson,B。Li,R。T。Howie和H.-K。毛,您一直想知道的有关金属氢的一切,但害怕问,径向。[11] P. Loubeyre,F。Occelli和P. Dumas,同步红外光谱证据,证明可能过渡到金属氢,自然577,631(2020)。[12] C. Ji,B。Liu,W.N Liu,J.,A。Majumdar,W。Luo,R。Ahuja,J。Shu,J。Wang,J。Wang,S。Sinogeikin,Y.Meng,V。B. Prakapenka,E。Greenberg,E。Greenberg,R.Xu,R.Xu,R.Xu,X. Huang,W。Yang,W。Yang,G。Shen,W。Shen,W。L. L. Mao,W。Mao和H.毛,氢中的超高压等值电子过渡,自然573,558(2019)。[13] M. I. Eremets,A。P。Drozdov,P。Kong和H. Wang,在350 GPA高于350 GPA的压力下的半金属分子氢。物理。15,1246(2019)。[14] H. Y. Geng,关于金属氢的公开辩论,以提高高压研究,物质辐射。极端2,275(2017)。[15] C. Ji,B。Li,W。Liu,J。S. Smith,A。Björling,A。Majumdar,W。Luo,R。Ahuja,J。Shu,
