105 并且也可根据 CC0 许可使用。 (未经同行评审认证)是作者/资助者。 本文是美国政府作品。 它不受 17 USC 版权的约束。 此预印本的版权持有者此版本于 2023 年 6 月 28 日发布。;https://doi.org/10.1101/2023.01.27.525958 doi:bioRxiv 预印本
105 并且也可根据 CC0 许可使用。 (未经同行评审认证)是作者/资助者。 本文是美国政府作品。 它不受 17 USC 版权的约束。 此预印本的版权持有者此版本于 2023 年 1 月 28 日发布。;https://doi.org/10.1101/2023.01.27.525958 doi:bioRxiv 预印本
临床上可用的小直径合成血管移植物(SDVG)由于移植物治疗受损而具有不令人满意的通畅率。因此,自体植入物仍然是小容器更换的金标准。可生物可吸收的SDVG可能是另一种选择,但是许多聚合物的生物力学特性不足,导致移植物衰竭。为了克服这些局限性,开发了一种新的可生物降解的SDVG,以确保安全使用,直到形成足够的新组织。SDVG是使用由热塑性聚氨酯(TPU)和新的自我增强TP(U-eREA)(TPUU)组成的聚合物混合物的电纺。通过细胞播种和血流相容性测试在体外测试生物相容性。在长达六个月的一段时间内,在大鼠中评估体内性能。 自体大鼠主动脉植入物充当对照组。 扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。 tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。 所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。 没有观察到炎症,动脉瘤,内膜增生或血栓形成。 对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。 这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。在长达六个月的一段时间内,在大鼠中评估体内性能。自体大鼠主动脉植入物充当对照组。扫描电子显微镜,微型计算层析成像(μCT),组织学和基因表达分析被应用。tpu/tpuu移植物显示出水孵育后生物力学特性的显着改善,并表现出极好的细胞和血流相容性。所有移植物均保留专利,尽管壁稀疏,但生物力学特性还是足够的。没有观察到炎症,动脉瘤,内膜增生或血栓形成。对移植物愈合的评估显示了TPU/TPUU和自体导管的相似基因表达纤维。这些新的可生物降解,自我强化的SDVG可能是未来临床使用的有前途的候选者。
图 1 原位原子力显微镜 (AFM) 在锂电池中的应用概述。阳极 - 电解质界面表征图像。经许可复制。26 版权所有 2020,美国化学学会。阴极 - 电解质界面表征图像。经许可复制。27 版权所有 2022,Wiley-VCH GmbH。AFM 压痕图像。经许可复制。28 版权所有 2020,Elsevier Inc. 硅电极图像。经许可复制。29 版权所有 2014,Elsevier BV Li-S 电池表征图像。经许可复制。30 版权所有 2017,Wiley-VCH GmbH。Li-O2 电池表征图像。经许可复制。31 版权所有 2013,美国化学学会。NMC 变形表征图像。经许可复制。 32 版权所有 2020,Elsevier Ltd. 阴离子插层表征图像。经许可复制。33 版权所有 2020,清华大学出版社和 Springer - Verlag GmbH Germany,Springer Nature 的一部分。CE,对电极;DMT,Derjaguin – Muller – Toporov;HOPG,高取向热解石墨;PES,1% 丙烯-1-烯-1,3-磺内酯;RE,参比电极;WE,工作电极。
电池电池的状态具有层分辨率。在我们先前的出版物上构建,我们在小袋单元上应用超声波,并处理反射的而不是传输波。这使我们能够利用飞行时间数据为以后的信号零件提供深度信息。我们开发并演示了一种算法,该算法通过将其估计的信封拟合到整个波浪的希尔伯特转换中,从而剖析反射的超声波并从电极堆栈中的物质界面计算单个反射。连续的单个反射用于计算物料界面的反射系数,然后将其映射到颜色图上。使用此算法,我们会从同一制造批次成像一个老化和原始的小袋单元。生成的图像显示出与验尸分析中的光学图像明显相关。超声图像的指示被验证为锂镀锂。
过去几十年来,可再生能源的增长增加了对具有成本效益的电能存储系统 (ESS) 的需求,该系统将客户需求与能源生产分离开来,从而可以始终为消费者提供可靠的供应 [1、2]。大规模并网存储需要能够承受大量充电/放电循环、具有高能源效率(至少 70%)并且资本成本合理 [3]。氧化还原液流电池 (RFB) 是拟议的替代方案之一,因为它们具有在能量容量和功率方面可以单独扩展的特殊能力。氧化还原电池是一种电化学系统,以流动介质中存在的氧化和还原电活性物质的形式储存能量。氧化还原活性物质包含在电解质中,通常储存在外部罐中。因此,能量容量由溶液体积和电活性材料的浓度决定,而功率输出由电池活性面积和电池数量决定。钒氧化还原液流电池是迄今为止研究最多、商业化使用最多的系统。该系统在两个半电池中使用同种元素的不同氧化态的离子,从而最大限度地减少通过膜扩散引起的电解质浓度变化,这是早期对先驱系统的调查中普遍存在的问题 [4]。尽管在这个研究领域取得了重大进展,全钒 RFB 仍远未达到成本目标 [5]。与储能容量相关的主要成本驱动因素是钒电解质 [6]。替代化学方法已被研究作为可行的低成本解决方案。其中,全铁因储能材料的易得性而脱颖而出 [7]。与全钒 RFB 一样,使用相同的氧化还原活性元素可消除交叉污染问题(尽管仍有待考虑当前的低效率)。然而,沉积和溶解速度很慢,并且作为副反应的氢气释放带来了额外的挑战。氢溴氧化还原液流电池 (H2-Br2RFB) 有望成为一种高功率系统,且电解质成本相当低 [8]。反应物储量丰富,
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
摘要:插层金属-有机骨架 (iMOF) 型电化学活性芳香金属羧酸盐是各种储能设备和微电子器件的有趣材料候选者。在这项工作中,我们通过原子/分子层沉积 (ALD/MLD) 原位生长此类材料的结晶薄膜;这种方法的显著优势在于可以在简单的电池配置中评估它们的电化学性能,而无需任何添加剂。研究了五种有机连接剂与锂的结合:对苯二甲酸 (TPA)、3,5-吡啶二甲酸 (PDC)、2,6-萘二甲酸 (NDC)、4,4 ′-联苯二甲酸 (BPDC) 和 4,4 ′-偶氮苯二甲酸 (AZO)。特别是,这里首次讨论了 Li-PDC 的电化学活性和 Li-AZO 的晶体结构。我们认为,原位气相薄膜沉积是利用 iMOF 型电极材料(例如微电子和可穿戴设备)的关键要求。关键词:原子层沉积、分子层沉积、薄膜、金属-有机骨架、储能、有机电极■ 简介
硅纳米结构已在现代微电子学中广泛使用。微电芯片中不断增加的整合密度不可避免地导致Si纳米结构的明显温度升高,这是承受大量热应力所必需的,以维持其适当的功能。si纳米结构也是许多新型纳米技术应用的基础,包括能量收集和存储,灵活且可拉伸的电子设备,传感器和纳米机械系统。[1]这些应用的可靠性问题要求对升高温度下的Si纳米结构的机械行为有基本的了解。在这里,我们报告了在RT至600 K的温度范围内单晶Si NWS的原位拉伸测试。[2]我们采用新开发的微电力系统(MEMS)[3-6]来进行透射电子显微镜(TEM)内的纳米热测试。该平台允许在不同温度下同时对原子尺度变形的TEM成像进行应力 - 应变测量。[2,7]基于MEMS的平台内置了一个片上加热器,从而使样品的受控加热。