Evans, L. (2018)。虚拟现实的重新出现。劳特利奇。Farman, J.(2020)。移动界面理论:具身空间和定位媒体。劳特利奇。Featherstone, M.,& Burrows, R. (1996)。网络空间/赛博体/赛博朋克:技术具身文化。SAGE。Fox, J.、Bailenson, J. N.,& Tricase, L. (2013)。性化虚拟自我的具身化:普罗透斯效应和经验
酒店业的语音助理:使用人工智能为客户服务。目的——语音助理 (VA) 通过识别人类语音并执行用户发出的命令来增强人机交互。本文研究了酒店业中酒店与客人之间基于 VA 的互动。该研究将 VA 置于人工智能 (AI) 支持的物联网 (IoT) 环境中,颠覆了旧的做法和流程。智能酒店业使用 VA 以经济高效的方式为客人提供轻松的价值共同创造。该研究调查了消费者对酒店业 VA 的看法和期望,并通过专家技术提供商探索 VA 功能。设计/方法/方法——这篇实证论文研究了 VA 在酒店环境中的当前使用情况和未来影响。它使用定性、半结构化的深入访谈,采访了 7 位专家酒店业 VA 技术提供商和 21 位有 VA 经验的酒店客人。该研究采用供需方法,全面解决酒店业中的 VA。发现——研究结果表明,酒店和客人两方终端用户的需求,探讨了 VA 的优势和挑战。分析表明,VA 正日益成为数字助理。VA 技术可帮助酒店改善客户服务、扩大运营能力并降低成本。尽管尚处于起步阶段,但 VA 技术已在优化酒店运营和升级客户服务方面取得了进展。该研究提出了一种语音交互模型。原创性——VA 研究通常侧重于私人家庭中的技术,而不是商业或酒店空间中的技术。本文为智能酒店业中有关人工智能和物联网的新兴文献做出了贡献,并探讨了 VA 的接受度和操作性。该研究有助于概念化 VA 支持的酒店服务,并探索其积极和消极特征以及未来前景。研究局限性/含义——本研究通过使用 VA 和智能酒店和旅游生态系统的发展来促进酒店服务的转型。该研究可以从与酒店经理的进一步研究中受益,以反映酒店经营者的观点并调查他们对 VA 的看法。进一步的研究还可以探索不同背景下消费者与虚拟助理互动的不同方面。实际意义——本文对酒店管理和人机交互最佳实践做出了重大贡献。它支持技术提供商重新考虑如何开发合适的技术解决方案,以提高其战略竞争力。它还解释了如何经济高效地使用虚拟助理,同时为旅行者的体验增加价值。
©欧洲药品局,2021年,如果将欧洲药品局作为材料来源,则授权将这些培训材料的内容复制和/或分配这些培训材料的内容。欧洲药品局开发了这种培训材料,以增强公众访问临床试验信息系统(CTIS)的信息。本材料描述了CTI的初步版本,因此可能不会像使用此材料时那样完全描述系统。该机构不保证或承担与使用(部分或全部)或第三方对本培训材料中包含的信息的解释有关的任何责任。
通过在警报单位内制定严格的操作程序,并借助新信息共享工具的出现,它采用主动和被动的方式来传播紧急信息,并且始终可靠,造福于地方、区域以及国际海事安全利益攸关方。海事领域的专业人士已经看到了其行动的结果。
互联网的无处不在意味着 TFGBV 可以无处不在、无情地渗透到受害者最私密的物理空间,例如他们的家或卧室。参与 TFGBV 的用户还可以利用自己和目标个人的在线社交网络来进一步实施虐待,招募其他人有意或无意地分享虐待材料,并污染目标个人自己的在线空间和社区。虐待材料在网上的永久性——一旦在网上分享就很难完全根除——也确保了受害者不断再次受害,造成持久的心理和其他伤害。8
摘要。目前,越来越多的居民使用汽车出行。道路交通量增加的后果是道路状况恶化、道路安全水平下降、空气污染加剧以及寻找停车位的问题。本文分析了 COVID-19 大流行之前和期间格利维采动态停车信息 (DPI) 覆盖的付费停车区 (PPZ) 停车位使用情况的每日变化。在工作的第一阶段,分析了 COVID-19 大流行之前和期间 DPI 覆盖的 PPZ 停车位中停车位使用情况和轮换指标的每日变化。进行了 Wilcoxon 检验以验证差异是否具有统计显著性。结果表明,COVID-19 大流行导致 PPZ 停车位使用率和轮换指标下降。此外,研究表明,收取停车位停车费会增加空间使用率和轮换指标。因此,可以为更多驾驶员提供停车位。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
不幸的是,闪存存储具有明显的物理限制。擦除块中的闪存单元只能在块完全删除后重写。闪光单元在每个写入和校准周期中都磨损,最终失去了可靠存储数据的能力,从而限制了细胞耐力。在传统的SSD中,闪存单元格及其特点隐藏在传统块界面后面。该接口是通过SSD上的复杂固件(Flash Translation Layer(FTL)(§2)实现的。块间面暴露于主机一个平坦的地址空间,可以在页面粒度(通常为4 kb)上写下,类似于HDD。该接口对应用程序开发人员熟悉,并得到主要操作系统的支持。但是,由于闪光灯细胞不能被覆盖,必须在擦除块粒度(通常几个兆字节)上擦除,随机写入迫使FTL实现垃圾收集以从对数字地址空间中被覆盖的旧数据中收回空间。垃圾收集在擦除擦除块之前将有效数据转发为过度配置(备用)闪存空间。这会导致写入,其中一旦在闪光灯上进行了多次写入逻辑地址空间的字节。通过使用多余的写入和射击循环来写扩增寿命。将数据放在一起将在同一时间左右无效的数据是避免写入放大的关键。重大的研究工作已朝着管理常规SSD块接口的不良影响方面。不幸的是,FTL无法访问此类数据放置所需的应用程序级信息,并且应用程序对FTL如何在设备上安排数据的控制有限。这在管理垃圾收集和其他FTL任务引起的绩效降低和不可预测性方面进行了很多工作[19,29,55,56]。先前的工作具有反向工程的FTL,以找到与FTL内部操作最有效的访问模式[20,62]。系统也经常会闪光灯写作以延长其闪光设备的寿命,因为它们的工作负载会导致高写放大[6,16,25]。本文认为,系统社区应停止今天研究常规SSD。我们的努力应该转移到分区名称空间(ZNS)SSD [52]。Zns是一个新的SSD接口,在