结果分别分别为37例和71例患者,分别为低和高的KI-67表达。ct 40 KeV-VP,CT 70 KeV-VP,CT 100 KEV-VP和Z EFF相关参数明显更高,但是与具有高KI-67表达式状态的基团表达状态较低的组中,与IC相关的参数较低,而其他分析的参数则没有显示两组之间的统计差异。Spearman的相关性分析表明,CT 40 KEV-VP,CT 70 KEV-VP,CT 100 KEV-VP,Z EFF,Z EFF和N Z EFF与KI-67状态呈负相关,而IC和NIC与KI-67状态呈正相关。ROC分析表明,光谱参数的多变量模型在识别KI-67状态[曲线下的面积(AUC)= 0.967;灵敏度为95.77%;特异性91.89%)]。然而,单变量模型的区分功能是中等的(AUC值0.630-0.835)。此外,NZ Eff
随机过程在物理学、数学、工程学和金融学中起着基础性的作用。量子计算的一个潜在应用是更好地近似随机过程的性质。例如,用于蒙特卡罗估计的量子算法将随机过程的量子模拟与振幅估计相结合,以改进均值估计。在这项工作中,我们研究了与蒙特卡罗方法兼容的模拟随机过程的量子算法。我们引入了一种新的随机过程“模拟”量子表示,其中时间 t 时的过程值存储在量子态的振幅中,从而能够以指数方式高效编码过程轨迹。我们表明,这种表示允许使用高效量子算法来模拟某些随机过程,这些算法使用这些过程的光谱特性与量子傅里叶变换相结合。特别是,我们表明我们可以使用门复杂度为 polylog(T) 的量子电路来模拟分数布朗运动的 T 个时间步,该电路可以连贯地准备布朗路径上的叠加。然后,我们表明这可以与量子均值估计相结合,以创建端到端算法,用于估计时间 O (polylog(T)ϵ − c) 内过程的某些时间平均值,其中 3 / 2 < c < 2 是分数布朗运动的某些变体,而经典蒙特卡洛运行时间为 O (Tϵ − 2),量子均值估计时间为 O (Tϵ − 1)。在此过程中,我们给出了一种有效的算法,以相干方式加载具有不同方差的高斯振幅的量子态,这可能是独立的兴趣所在。
胶质母细胞瘤手术切除是神经外科医生的问题任务。肿瘤完全切除可提高患者的愈合机会和预后,而过度切除可能导致神经缺陷。然而,外科医生的视力几乎无法追溯肿瘤的范围和边界。的确,大多数手术过程都会导致小计切除术。组织病理学测试可能会完全消除肿瘤,尽管由于组织检查所需的时间是不可行的。几项研究报告了具有独特的分子特征和特性的肿瘤细胞。高光谱成像(HSI)是一种新兴的,非接触,非离子化,无标签和微创光学成像技术,能够在分子水平上提取有关观察到的组织的信息。在这里,我们利用了广泛的数据增强,转移学习,U-NET ++和DEEPLAB-V3+体系结构,以执行术中胶质母细胞瘤性超光谱图像的自动端到端分割,以符合竞争性处理时间和涉及金额标准过程的竞争性处理时间和细分结果。基于旋转框架提供的地面真理,我们大大改善了HSIS的处理时间,从而实现了针对手术开放式颅骨手术期间实时加工的胶质母细胞瘤的端到端分段,从而改善了金标准ML Pipeline。我们测量了有关MATLAB 2020a提供的标准CUDA环境的竞争推论时间。此外,我们在定性和定量上评估了分割结果。最快的平行版本最快的螺旋叶素得以阐述数据库中最突出的图像,而我们的方法论则在0.29±0.17 s中执行分割推断,因此对处理对处理的21秒构成了实时符合性的约束。
动态环境中的量子发射器的能级可能会随着波动的浴液而不受控制地漂移。这会导致发射和/或吸收光谱分布在很宽的频率范围内,并对各种应用构成挑战。我们考虑一个量子发射器,它处于一个能级改变的环境中,因此发射频率由给定平均值周围的高斯随机分布表示,给定标准差和相关时间。我们研究了该系统在受到周期性有限宽度π脉冲序列影响时的发射光谱。我们表明,这种外部场协议可以通过将大部分发射光谱重新聚焦到脉冲载波频率上来有效克服该系统中的光谱扩散。我们进一步考虑了不同噪声环境中的两个这样的发射器,发现通过在两个系统上应用有限宽度脉冲序列可以使双光子干涉操作变得高效。最后,我们展示了一组名义上相似的发射器,每个发射器都有不同的环境,因此发射频率会随机偏移,其整体发射光谱可以重新聚焦到具有明确中心峰的线形上,该峰的线宽与单个孤立无噪声发射器的线宽相同,而这些发射器各自具有不同的环境,因此发射频率会随机偏移,其整体发射光谱本来会根据随机分布不均匀地加宽。这些结果表明,对于这种特定的噪声环境模型,外部控制协议可以保护光谱特性,这里用有限宽度脉冲的周期性序列来表示。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec China(IMEC 微电子(上海)有限公司)和 imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
摘要 认知工作量 (CWL) 是评估和监测人类执行认知任务时表现的基本概念。许多研究尝试使用神经成像技术客观、持续地测量 CWL。尽管脑电图 (EEG) 是一种广泛使用的技术,但 CWL 对大脑频率频谱功率的影响却显示出不一致的结果。本综述旨在综合文献结果并定量评估哪种大脑频率对 CWL 最敏感。按照 PRISMA 建议进行系统的文献检索,突出了用于测量 CWL 的三个主要频带:θ (4-8 Hz)、α (8-12 Hz) 和β (12-30 Hz)。进行了三项荟萃分析以定量检验 CWL 对这些频率的影响。共计算了来自 24 项研究(涉及 723 名参与者)的 45 个效应大小。 CWL 对 theta (g = 0.68, CI [0.41, 0.95])、alpha (g = −0.25, CI [−0.45, 0.04]) 和 beta (g = 0.50, CI [0.21, 0.79]) 功率有显著影响。我们的结果表明,theta,尤其是额叶 theta,是 CWL 的最佳指数。alpha 和 beta 功率也受到 CWL 的显著影响;然而,它们之间的关联似乎不那么直接。考虑到脑震荡方面的文献,对这些结果进行了批判性分析。最后,我们强调需要研究 CWL 与可能影响频谱功率的其他因素(例如情绪负荷)之间的相互作用,并将该测量方法与中枢和周围神经系统的其他分析方法(例如功能连接、心率)相结合。
大脑计算机界面(BCIS)越来越有用。这样的BCI可用于帮助失去流动性或控制四肢的个人,出于娱乐目的,例如游戏或半自主驾驶,或者是用于人造装置的界面。到目前为止,用于思考解码的算法的性能受到限制。我们表明,通过从脑电图(EEG)信号中提取时间和频谱特征,然后使用深度学习神经网络对这些特征进行分类,可以显着提高BCIS在预测主体想象的运动动作方面的性能。我们的运动预测算法使用顺序的向后选择技术来共同选择分类的时间和光谱特征以及径向基函数神经网络。与最先进的基准算法相比,该方法的平均性能提高3.50%。使用两个流行的公共数据集,我们的算法在第一个数据集中达到90.08%的精度(平均基准为79.99%),第二个数据集的算法达到了88.74%(平均基准:82.01%)。鉴于基于EEG的动作解码中的较高可变性和跨主体的可变性,我们建议使用多种模式的功能以及神经网络分类协议可能会提高各种任务中BCI的性能。
没有人类驾驶员的干预,并与其他车辆和/或基础设施以及其他设备2进行通信2。美国运输部总结了将CAV技术引入运输系统3:道路安全,经济和社会福利,能源效率和公共流动性的四个主要潜在好处。CAV技术为驾驶员/车辆和交通基础设施创造了一个新的环境,以在现实世界中进行交互。在这种环境中,连接起着至关重要的作用,无线通信使车辆能够相互通信(V2V)以及基础架构(V2I)(v2i)关于实时车辆位置,速度,加速度和其他数据。这些实时数据的可用性为CAVS提供了协调交通相互作用的机会,以使交通相互作用,以最大程度地提高燃油效率并减少碰撞4。猜测对自动运输系统进行了实质性转变,已经进行了许多研究,以调查涉及CAV应用程序的挑战和机会5,6,7,8。例如,橡树岭国家实验室9正在开发用于CAVS应用程序的实时移动控制系统(RTMC),其中包括流量数据管理,路线计划,集中式通信和可视化。已经证明,可以使用交通信号阶段和计时(SPAT)信息来提高车辆燃油效率以协调车辆操作10。还已经确定,可以通过解决相关的最佳控制问题4来确定车辆的最佳速度方案。然而,尽管许多研究人员已经证明了使用SPAT信息来优化燃油经济性的潜力,但大多数努力都集中在提高单个车辆的性能并发出信号计时控制11,12。此外,相关作品主要集中于为CAV生成可行的轨迹,同时忽略了以计算效率和保证收敛性来实时执行生成的轨迹。骑士的运动控制系统是安全至关重要的,并严重依赖于车载算法。需要对操作的实时更新,以应对周围环境的动态。尽管已经提出了许多方法来获得轨迹的轨迹,但由于高计算成本,无法保证最佳解决方案,并且无法应付非凸运动限制和动态环境,因此它们的优化方法不适合现实世界实施。13,14。本文将通过开发一种基于凸优化的新型方法来满足这种需求,该方法使用SPAT信息产生速度曲线。具有多项式解决方案时间和全球最佳收敛的优点,凸优化方法对于车载应用非常有前途。这项研究的贡献是三倍。首先,提出的顺序凸编程(SCP)算法解决了非线性和非凸的最佳速度控制问题,并确保收敛性和多项式解决方案时间在解决每个步骤中解决凸的问题时。本文的其余部分如下:第2节对相关工作进行了简要审查。第二,我们利用伪搭配方法与线路搜索和信任区域技术结合使用,从根本上改善了提出的SCP算法,以提高准确性,更好的实时和融合性能。第三,得益于高级计算效率,该提出的方法实现了实时模型预测控制(MPC)框架,并对动态交通环境的即时响应,以避免碰撞和车辆协调。第3节描述了本研究中考虑的系统动力学和最佳控制问题。第4节介绍了一种新方法,该方法确定了在信号走廊中行驶的骑士的最佳车辆速度轮廓。第5节通过模拟结果和比较证明了拟议方法的性能和有效性。第6节总结了本文的工作。
针对光谱成像技术在卫星遥感、生物医学诊断、海洋探测与救援、农林监测与分类、军事伪装识别等方面的应用需求,本文采用532和650 nm激光器作为光源,利用多光谱强度相关成像设备——基于稀疏性约束鬼成像(GISC)的快照式光谱相机实现目标的精确识别。本文阐述了快照式GISC光谱成像原理,并开展了基于主动激光照明的GISC光谱成像目标识别技术实验研究工作。实验结果表明,采用532 nm激光作为光源照射目标物体可以准确识别绿色目标字母“I”;采用650 nm激光作为光源照射目标物体可以准确识别红色目标字母“Q”。并给出了GISC光谱相机在446~698nm波长范围内单次曝光获取的彩色目标“QIT”的光谱成像结果,包括伪彩色图和彩色融合图。为了进一步说明实验的可行性,对重建图像的光谱分布进行了分析,具有重要的实际意义和工程价值。