背景。暴食症 (BED) 与神经行为改变同时发生,这些改变与处理与疾病相关的内容(例如视觉食物刺激)有关。直接针对它们的神经反馈 (NF) 是否适合治疗仍不清楚。本研究旨在确定个性化、基于功能性近红外光谱的实时 NF (rtfNIRS-NF) 和基于高β脑电图的 NF (EEG-NF) 的可行性并评估其效果,假设优于等待名单 (WL)。方法。单中心、评估者盲法可行性研究,随机分配到 rtfNIRS-NF、EEG-NF 或 WL,并在基线 (t 0)、评估后 (t 1) 和 6 个月随访 (t 2) 进行评估。NF 包括 8 周内 12 次 60 分钟的食物特异性 rtfNIRS-NF 或 EEG-NF 疗程。主要结果是通过访谈评估的 t 1 时的暴饮暴食频率。次要结果包括可行性、饮食失调症状、心理和身体健康、体重管理相关行为、执行功能以及 t 1 和 t 2 时的大脑活动。结果。在 72 名患者(意向治疗)中,结果显示 NF 在招募、流失、依从性、依从性、接受度和评估完成度方面的可行性。暴饮暴食在 t 1 时改善了 -8.0 次,NF 与 WL 相比没有优势(-0.8 次,95% CI -2.4 至 4.0),但 t 2 时 NF 的估计值相对于 t 1 有所改善。在食物渴望、焦虑症状和体重指数方面,NF 优于 WL,但总体影响大多较小。大脑活动变化接近于零。结论。结果显示,食物特异性 rtfNIRS-NF 和 EEG-NF 在 BED 中的可行性,并且与 WL 相比没有治疗后差异,但暴饮暴食可能继续改善。考虑到剂量反应关系和给药方式,在双盲随机设计中进行长期随访,有必要提供确认和机制证据。
生物膜的平面外闪光,也称为随机位移,在调节细胞和细胞器中的许多基本生命过程中起着至关重要的作用。尽管有各种方法可用于量化膜动力学,但可以准确地量化具有快速和微小的闪光(例如线粒体)的复杂膜系统仍然是一个挑战。在这项工作中,我们提出了一种方法,该方法将金属/格拉烯诱导的能量转移(MIET/GIET)与荧光相关光谱(FCS)结合在一起,以量化膜的平面弹性与大约一个Nanonoles和One MicroseCond的平面空间分辨率。为了验证技术和时空分辨率,我们测量模型膜的弯曲起伏。此外,我们证明了MIET/GIET-FC在研究多样化的膜系统中的多功能性和适用性,包括人类红细胞的广泛研究的振动系统,以及两个未探索的膜系统,具有微小的闪光,一个微小的孔,一个孔隙孔膜膜,膜状膜和米孔粒粒度/外粒粒子/毛线粒粒粒粒粒粒粒粒粒粒粒粒粒粒粒度。
透明导电金属氧化物已成为研究的主题,这要归功于它们的独特物理特性以及潜在的微观和纳米电子设备和显示单元的应用。这些材料的基本实际应用是基于明显的特异性抗性和高可见的透射率。透明的金属氧化物尤其包括诸如碳锡氧化物,氧化锌,氧化镉等化合物。氧化锌半导体作为压电和光纤材料具有实用的应用潜力,可作为功能性气体传感器组件,表面声设备,透明电极和太阳能电池[1-4]。高光带隙值(〜3。3 eV在室温下)和激子结合能(约60 meV)允许将ZnO作为创建下一代紫外线光电设备和彩色显示单元的磷光器的材料。对于上面提到的许多应用,例如,通过合金来控制ZnO薄膜结构的物理参数的不稳定性是必不可少的。在这种情况下,铜合金添加剂更有效,因为铜是半导体中迅速扩散的杂质,它会导致结晶结构和物理性能的修改,例如,表面状态能量参数以及光学特性[5-7]。后者提供了有关光学主动故障的能量结构的其他信息,这具有很高的实际兴趣。这项研究的目的是研究未扎的ZnO铜掺杂(ZnO:Cu)薄膜的光光谱的行为。
执行Attosond-Pump Attosent-probe光谱(APAPS)的能力是超快科学的长期目标。第一次开创性的实验证明了APAP的可行性,但重复率较低(10至120 Hz),并且现有设置的大量足迹迄今妨碍了对APAP的广泛利用。在这里,我们使用1 kHz的商业激光系统,在空心核心纤维中直接压缩后进行了两种座椅,以及紧凑的高谐波生成(HHG)设置。后者可以通过使用过量的HHG几何形状并利用HHG培养基中驱动激光器的瞬时蓝光来实现强烈的极端脉络膜(XUV)脉冲的产生。产生了近距离的脉冲,如一色和两色Xuv-Pump Xuv-probe实验所证明的那样。我们的概念允许在许多实验室的极短时间内进行选择性抽水和探测,并允许对其他泵种技术无法访问的基本过程进行调查。
a IHP–Leibniz-Institut fu¨r innovative Mikroelektronik,Im Technologiepark 25,15236 Frankfurt (Oder),德国 b Istituto Italiano di Tecnologia – Materials Characterization Facility,热那亚 16163,意大利 c CIC nanoGUNE BRTA,20018 Donostia-San Sebastia´n,巴斯克地区,西班牙。电子邮箱:b.martingarcia@nanogune.eu d IKERBASQUE,巴斯克科学基金会,48009 Bilbao,西班牙 † 可用的电子补充信息 (ESI):化学蚀刻过程中的 Te 晶体照片和所研究 Te 晶体蚀刻坑的光学图像;关于拉曼数据采集条件和硅 (100) 极化测试的对照实验;交叉配置中角度相关的线性偏振拉曼光谱测量;线性偏振拉曼光谱的拉曼张量分析;以及 (100) 和 (110) 平面的圆偏振拉曼光谱测量。请参阅 DOI:https://doi.org/10.1039/d3tc04333a
抽象的分层混合植物(LPK)作为光伏细胞,LED和激光器的稳定性提高,有望作为光伏细胞,LED和激光的3D金属卤化物钙钛矿的替代品或添加剂。然而,这些材料中的高激子结合能意味着激子是许多设备运行条件下的大多数物种。尽管结合LPK的设备的效率一直在增加,但对于这些材料中的激子和自由电荷载体的相互作用仍然未知,这对于理解光电特性如何决定设备的效率是至关重要的信息。在这项工作中,我们采用光泵 / THZ探针光谱(OPTP)和可见的瞬态吸收光谱(TAS)来分析苯基甲基铵铅碘化物(PEA)2 PBI 4的光扣性特性和电荷载体动力学。通过结合这些技术,我们能够从激发子和自由电荷载体中解散贡献。我们观察到在约400 fs的时间尺度上快速冷却自由电荷载体和激子形成,然后在速率常数k 2〜10 9 cm 3 s-1的时间尺度上进行较慢的双分子重组。激子通过两个单分子过程重组,其寿命为t 1〜11 ps和t 2〜83 ps。此外,我们检测出激子的特征 - 瞬态吸收动力学痕迹中的声子耦合。这些发现提供了有关自由电荷接入器和激子之间相互作用的新见解,以及可能进一步了解LPK中的电荷运营商动力学的可能机制。
亨廷顿氏病是一种遗传性疾病,其特征是由于纹状体中中刺神经元的变性而导致精神病,认知和运动症状。前阶段先于发作,持续数十年。当前的生物标志物包括使用磁共振成像(MRI)的临床评分和纹状体萎缩。这些标记对前阶段中细微的细胞变化缺乏敏感性。MRI和MR光谱法提供了不同的对比度,用于评估疾病中的代谢,微结构,功能或血管改变。它们已用于患者和小鼠模型。小鼠模型研究退化过程的特定机制可能引起人们的兴趣,可以更好地理解从前驱阶段到有症状阶段的发病机理,并评估治疗功效。小鼠模型可以分为三种不同的构造:表达人类亨廷汀(HTT)外显子1的转基因小鼠,具有表达全长人类HTT的人造染色体的小鼠,以及插入鼠类HTT基因中的CAG膨胀的敲入小鼠模型。几项研究已使用MRI/S来表征这些模型。但是,可用的多种方式和鼠标模型使人们对这种富裕的语料库的理解变得复杂。本综述旨在概述使用MRI/S为每个HD的MRI/S获得的结果,以提供使用HD小鼠模型的神经影像学研究概念的有用资源。本综述还旨在涵盖这一方面,以证明MRI/S对于研究高清的重要性。最后,尽管在将临床前方案转换为临床应用方面遇到困难,但在临床前模型中鉴定出的许多生物标志物已经在患者中进行了评估。
我们报告了YBA 2 Cu 3 O 6 + X薄膜的非线性Terahertz第三谐波生成(THG)的测量。与常规超导体不同,THG信号开始出现在正常状态下,这与广泛掺杂水平的伪gap的交叉温度t *一致。降低温度后,THG信号在最佳掺杂样品中显示出低于T C以下的异常。值得注意的是,我们直接观察到THG信号的实时波形中的节拍模式。我们阐述的是,HIGGS模式在T C下方开发的HIGGS模式与已经在T *下面开发的模式伴侣,从而导致能级分裂。但是,这种耦合效应在被压倒性的样品中并不明显。我们探索了观察到的现象的不同潜在解释。我们的研究提供了对超导性和伪群之间相互作用的宝贵见解。
针灸、按摩、太极拳、八段锦等中医非药物疗法已成为临床治疗各种疾病的广泛干预措施。近年来,对中医非药物疗法机制的初步研究大多基于功能性近红外光谱 (fNIRS) 技术。FNIRS 是一种创新的、非侵入性工具,用于监测大脑皮层血流动力学变化。我们的综述包括过去 10 年进行的临床研究,确立了 fNIRS 是一种可靠且稳定的神经成像技术。本综述探讨了该技术在神经科学领域的新应用。首先,我们总结了 fNIRS 的工作原理。然后,我们介绍了在健康个体中使用 fNIRS 的预防性研究和对接受中医非药物疗法的患者的治疗性研究。最后,我们强调了鼓励未来 fNIRS 研究进步的潜力,从而为相关领域的研究建立理论框架。