在2015年[1]实现了从单个原子中对单个原子的电子自旋共振信号的观察,并且自那时以来已经取得了相当大的进步。(有关其他参考,请参见推荐论文)。最近推荐的两篇论文报告特别引人注目的进展,这应该引起凝结问题以及量子计算社区的关注。在第一张纸中,携带s = 1/2的分子连接到STM尖端,并观察到尖锐的电子自旋共振。该共振的移位可用于感应很小的磁场和电场,并具有易A的尺度空间分辨率。第二篇论文报告了位于表面上的传感器原子的ESR信号的使用,以询问其他两个S = 1/2原子,这些原子在Qubits上使用。使用脉冲场技术证明了显着的连贯性能和两个量子操作。本评论将主要集中在第一篇论文上,最后讨论了第二篇论文。在单个离子水平上显示ESR的知名系统是Diamond的NV中心。[2] NV中心的非常狭窄的共振可用于测量局部磁场,向下降低Micro-Tesla Hz 1/2。通过将钻石放在AFM尖端上,也可以进行扫描。但是,由于NV中心位于与表面的数十纳米尺度上,因此这限制了NV中心与其靶标的距离,因此将空间分辨率与数十纳米的纳米分辨率限制。另一方面,尖端的垂直位置可以变化,这增加了测量磁性
摘要 量子点 (QD) 中自旋量子比特的电控制依赖于自旋轨道耦合 (SOC),它既可以是底层晶格或异质结构的固有特性,也可以是外部特性,例如通过微磁体。在实验中,微磁体已被用作合成 SOC,以使量子点中的自旋量子比特与电场强耦合。在这里,我们从理论上研究了由于合成 SOC 诱导的自旋轨道混合而导致的 QD 中电子的自旋弛豫、纯失相、自旋操纵和自旋光子耦合。我们发现,与固有 SOC 的情况相比,合成 SOC 存在时自旋动力学存在质的差异。具体而言,由于合成 SOC 和形变势声子发射(或约翰逊噪声)引起的自旋弛豫表现出对磁场的 B 5 0(或 B 0 )依赖性,这与本征 SOC 的 B 7 0(或 B 3 0 )依赖性形成对比。此外,电荷噪声会导致合成 SOC 发生快速自旋失相至一阶,这与本征 SOC 可忽略的自旋纯失相形成鲜明对比。这些定性差异归因于合成 SOC 的时间反转对称性(T 对称性)破缺。具有破缺 T 对称性的 SOC(例如来自微磁体的合成 SOC)消除了“范弗莱克抵消”并导致有限的纵向自旋-电耦合,从而允许自旋和电场之间的纵向耦合,进而允许自旋纯失相。最后,通过适当选择磁场方向,可以改善通过合成 SOC 实现的电偶极子自旋共振,并在基于自旋的量子计算中具有潜在的应用。
摘要。本研究旨在生产有关机械量子力学主题的数字讲义,而没有旋转,带有旋转的量子力学是有效且实用的。开发此数字讲义结合了Rowntree的开发模型和评估模型Tessmer Formative。Rowntree开发模型包括三个阶段,即:计划,开发和评估。评估阶段由四个阶段组成,即:自我评估,专家审查,一对一评估,小组评估。本研究中使用演练和问卷调查的技术数据收集。研究学科这是一名学生,他参加了Sriwijaya University的物理教育研究计划Indralaya班级的入门量子物理类。获得了符合非常有效类别的平均得分平均值,其内容方面的分数为4.92,设计方面4.46和语言方面4.5。并以4.43at的平均得分为一对一评估阶段,在小组评估阶段达到4.43的平均得分。
引文:关于物理学中拓扑和对称性的新思想,预测了一种只在表面导电的新材料。描述:自本·富兰克林时代以来,我们就开始区分导电和绝缘的电形式。但查尔斯·凯恩和吉恩·梅勒颠覆了这一概念,他们预测了一种新材料——“拓扑绝缘体”,这种材料在边界上是不可侵犯的电导体,但在内部是绝缘体。他们的发现对量子计算的“太空竞赛”具有重要意义,并可能导致新一代电子设备的出现,从而有望在计算中实现巨大的能源效率。拓扑绝缘体还为深入探究物质和能量的基本性质提供了一个窗口,因为它们表现出类似于物理学基本粒子(电子和光子)的粒子状激发,但可以在实验室中以电子和光子无法控制的方式进行控制。这些连接为控制各种物质状态下的电荷、光甚至机械波的流动提供了一个新的概念框架。意想不到的应用似乎也是不可避免的:当晶体管于 1947 年发明时,没有人能够真正预测到它将带来信息技术,使 TB 级的数据能够塞进一个微小的硅片上。
量子力学推动了技术上有用的组件(例如晶体管、激光器、磁隧道结等)的发展,这些组件改变了我们的经济和社会。下一代量子技术 (QT) 将基于叠加和纠缠的物理学,需要开发能够支持这些效应的新材料。在本期《观点》中,我们重点关注自旋和拓扑的材料实现,作为未来 QT 中可利用的量子对象,为计算、传感、通信和信息存储的新策略奠定基础。在固态材料中,自旋自由度可用于单自旋极限,其中孤立自旋的光学和电子控制可以实现高保真度的相干控制和自旋操纵。最近,基于微妙但强大的相对论自旋轨道耦合的概念已经实现了几个令人兴奋的突破,包括实空间和动量空间中的拓扑自旋纹理。磁性 skyrmion 是一个标志性的例子;它们的拓扑保护在纳米尺度上实现了巨大的稳定性,从而引发了将它们用作信息载体的令人兴奋的提议。稳健的自旋纹理也出现在拓扑绝缘体的动量空间中,可以产生高效的自旋电荷转换。将自旋轨道耦合的物理特性和新型自旋纹理与超导性相结合,可以进一步发挥协同作用,利用材料的量子力学相并生成新的序参量。在窄带隙和宽带隙半导体中实现的电子自旋量子比特现在已经为纳米级光通信网络和传感提供了最有前途的平台之一。
简介。— 实验表征系统不同部分之间的量子关联对于量子技术的发展至关重要。量子关联不仅是量子力学预测的最奇特效应的核心,例如纠缠、EPR 控制 [1 – 3] 或贝尔非局域性 [4] ;它们还为不同的量子信息或计量任务提供了优势,甚至对于非纠缠态 [5 – 7] 也是如此。此外,量子关联应该出现在一般的量子系统中 [8] ,而量子多体系统通常是经典计算机无法处理的。因此,在控制良好的量子模拟器上进行测量对于提高我们对复杂量子系统的理解至关重要。证明关联的量子性质是一项实验挑战,这需要测量非交换算子。由于全状态层析成像会随着成分数量的增加而呈指数级增长 [9],因此在大型集合中无法实现,因此开发新协议以从部分测量(例如二分或集体测量)推断相关性至关重要。后者已成功在处理有效两级系统的实验平台上展示了纠缠 [3]、转向 [10 – 12] 或非局域性 [13]。由固定在光学晶格中的 s > 1 = 2 粒子组成的系统对于量子技术也特别有趣,因为它们的希尔伯特空间相对于量子比特(s ¼ 1 = 2)系统扩大,为量子信息处理提供了新的可能性 [14]。然而,它们的
我们提出了一种在可控原子、分子和光学系统中制备自旋压缩态的协议,特别适用于与里德堡相互作用兼容的新兴光学时钟平台。通过将短程软核势与外部驱动器相结合,我们可以将自然出现的 Ising 相互作用转换为 XX 自旋模型,同时打开多体间隙。间隙有助于将系统保持在可以产生计量学上有用的自旋压缩的状态集合流形内。我们检查了我们的协议对实验相关退相干的稳健性,并显示出比缺乏间隙保护的典型协议更优的性能。例如,在 14 × 14 系统中,我们观察到软核相互作用可以产生与全对全 Ising 模型相当的自旋压缩,即使存在相关的退相干,其压缩量与具有 1 / r 3 偶极相互作用的无退相干 XX 自旋模型相同,并且比具有 1 / r 6 相互作用的无退相干 XX 自旋模型高 5.8 dB 增益。
单个量子点的塞曼分裂自旋态可与其光学三子跃迁一起使用,在静止(自旋)和飞行(光子)量子位之间形成自旋 - 光子界面。除了自旋态本身的长相干时间之外,三子态的极限退相干机制也是至关重要的。在这里,我们在时间分辨共振荧光中研究了施加磁场(高达 B ¼ 10 T)下单个自组装量子点中的电子自旋和三子动力学。量子点仅与电子库弱耦合,隧穿速率约为 1 ms 1 。使用这种样本结构,除了电子的自旋翻转速率和三子跃迁的自旋翻转拉曼速率之外,我们还可以测量将俄歇电子散射到导带的俄歇复合过程。俄歇效应会破坏辐射三子跃迁,使量子点保持空置状态,直到电子从储存器隧穿到量子点中。俄歇复合事件与随后从储存器隧穿的电子相结合,可以翻转电子自旋,从而构成限制自旋寿命的另一种机制。
[6] C. Guo, J. Xu, D. Rocca 和 Y. Ping, Phys. Rev. B 102, 205113, (2020)。[7] F. Wu, D. Rocca 和 Y. Ping, J. Mater. Chem. C, 7, 12891 (2019)。[8] F. Wu, TJ Smart 和 Y. Ping, Phys. Rev. B, 100, 081407(R) (2019)。[9] Y. Ping 和 TJ Smart, Nat. Comput. Sci., 1, 646, (2021) [10] K. Li, TJ Smart, Y. Ping, Phys. Rev. Mater (Letter), 6, L042201, (2022) [11] S. Zhang, K. Li, C. Guo, 和 Y. Ping, 2D Materials, 正在印刷, (2023) arxiv.org/abs/2304.05612
设计先进的单位形状各向异性 MRAM 单元需要准确评估具有细长自由层和参考层的磁隧道结 (MTJ) 中的自旋电流和扭矩。为此,我们通过在隧道屏障界面处引入适当的自旋电流边界条件,并采用局部依赖于电荷电流磁化矢量之间角度的电导率,将成功用于纳米级金属自旋阀的分析方法扩展到 MTJ。从而准确地再现了作用于自由层的扭矩的实验测量电压和角度依赖性。超大规模 MRAM 单元的开关行为与最近对形状各向异性 MTJ 的实验一致。使用我们的扩展方法对于准确捕捉 Slonczewski 和 Zhang-Li 扭矩贡献对包含多个 MgO 屏障的复合自由层中的纹理磁化作用的相互作用绝对必不可少。