采用非平衡格林函数方法结合戴森方程技术,理论研究了与具有强自旋轨道相互作用的拓扑超导或半导体纳米线连接的量子点(QD)中的自旋塞贝克效应(SSE)特性。低温下,在拓扑超导或半导体纳米线末端制备马约拉纳零模(MZM),并以自旋相关的强度与QD杂化。我们认为QD在自旋热积累(SHA)的存在下耦合到两根引线,即引线中的温度自旋相关。我们发现,当QD与MZM中一个模式之间的杂化强度取决于电子自旋方向时,热电势就是自旋极化的,而通过改变SHA的大小可以有效地调节其自旋极化。通过适当改变 QD-MZM 杂化强度的自旋极化、SHA 的大小、点级或 MZM 之间的直接耦合,可以产生 100% 自旋极化或纯热能。我们的研究结果可能在高效自旋电子器件或 MZM 检测中得到实际应用,这些器件目前正在接受广泛研究。本模型在当前纳米技术的范围内,可用于高效自旋热电子器件。
图 1:四种钒基配合物的电子-质子超精细耦合与 V- 1 H 分离的关系,包括 B3LYP 计算的各向同性费米接触 (FC) 相互作用和各向异性空间自旋偶极 (SD) 贡献。[VO(C 3 H 6 S 2 ) 2 ] 2– 和 [VO(C 7 H 6 S 6 ) 2 ] 2– 的分子结构显示在数据上方:V - 粉色;O - 红色;S - 黄色;C - 灰色;H - 白色。
我们研究了在一系列实验相关几何中通过 Kitaev 量子自旋液体 (QSL) 屏障隧穿的光谱特征。我们结合了弹性和非弹性隧穿过程的贡献,发现在流动自旋子模式下的自旋翻转散射会导致隧穿电导谱的间隙贡献。我们讨论了在将候选材料 α -RuCl 3 驱动到 QSL 相时产生的磁场中出现的光谱变化,并提出了横向 1D 隧道结作为此范围内的可行设置。特征自旋间隙是分数化 QSL 激发的明确特征,可将其与磁振子或声子区分开来。我们讨论了将我们的结果推广到具有间隙和无间隙自旋相关器的各种 QSL。
分子自旋电子学的目标是利用单个或少数分子作为自旋电子学应用的功能构建块,直接依赖于分子特性或分子与无机电极之间界面的特性。由于设备不断向小型化发展,现有硅基电子产品的摩尔定律即将终结,这些目标显得尤为重要。尽管人们对分子作为自旋传输介质的兴趣最初源于其固有的弱自旋弛豫机制导致的长自旋寿命,[5] 但人们很快意识到分子可能提供传统自旋电子学所不具备的额外选择。这是因为与无机自旋电子学中使用的材料不同,分子的结构、化学和电子特性可以以几乎无限多种方式以原子精度进行调整。当分子与无机电极接触时(这是实现单个或少数分子设备的先决条件),它们的界面相互作用可以产生标准无机界面无法实现的功能。 [3,4]
硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
手性在确定供体受体分子中光诱导电子转移的自旋动力学中的作用仍然是一个悬而未决的问题。尽管在与底物结合的分子中已经证明了手性诱导的自旋选择性(CISS),但有关该过程是否影响分子本身中的自旋动力学的实验信息。在这里,我们使用时间分辨的电子顺磁共振光谱表明,CISS强烈影响分离的共价供体 - 手持桥接器(D-Bχ-A)分子的25种自旋动力学,D的选择性光添加了D之后是两个快速的,顺序的电子转移事件,从而产生了D•+ -b-a• - • - •-a•-a• -利用这种现象提供了使用手性分子构建块来控制量子信息应用中电子自旋状态的可能性。30
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制