受损脊髓组织的有效再生和功能恢复一直是再生医学领域关注的焦点。由于血脊髓屏障 (BSCB) 的阻塞、药物缺乏靶向性以及损伤部位的病理生理学复杂,脊髓损伤 (SCI) 的治疗具有挑战性。脂质纳米囊泡,包括细胞衍生的纳米囊泡和合成脂质纳米囊泡,具有高度的生物相容性,可以穿透 BSCB,因此是针对性治疗 SCI 的有效递送系统。我们总结了脂质纳米囊泡在 SCI 靶向治疗方面的进展,讨论了它们的优势和挑战,并对脂质纳米囊泡在 SCI 治疗中的应用进行了展望。虽然大多数基于脂质纳米囊泡的 SCI 治疗仍处于临床前研究阶段,但这种低免疫原性、低毒性和高度可工程化的纳米囊泡将为未来的脊髓损伤治疗带来巨大的希望。
摘要:脑脊液(CSF)是发现神经系统疾病生物标志物的重要基质。然而,CSF中蛋白质浓度的高动态范围阻碍了不靶向的质谱法检测最少丰富的蛋白质生物标志物。因此,对大脑内部的分泌过程有更深入的了解是有益的。在这里,我们旨在探讨脑蛋白是否以及如何预测CSF的分泌。通过将策划的CSF蛋白质组和人蛋白质图集的脑升高蛋白质组相结合,将脑蛋白分类为CSF或非CSF分泌。机器学习模型接受了一系列基于序列的特征的培训,以区分CSF和非CSF组,并有效地预测蛋白质的大脑起源。分类模型如果使用高置信度CSF蛋白,则在曲线下达到0.89的面积。最重要的预测特征包括亚细胞定位,信号肽和跨膜区域。分类器良好地概括为较大的大脑检测到的蛋白质组,并能够正确预测通过亲和力蛋白质组学鉴定的新型CSF蛋白。除了阐明蛋白质分泌的潜在机制外,受过训练的分类模型还可以支持生物标志物候选者的选择。关键字:脑蛋白质组,脑脊液,流体生物标志物,机器学习,蛋白质分泌■简介
创伤性或非创伤性脊髓损伤(SCI)可导致严重残疾和并发症。SCI发病率高,康复周期长,增加了患者和医疗保健系统的经济负担。然而,目前尚无实用的SCI治疗方法。最近,经颅磁刺激(TMS)是一种非侵入性脑刺激技术,已被证明可通过调节刺激部位及其功能连接网络的神经元活动来诱发大脑特定区域的可塑性变化。TMS是SCI及其并发症康复的一种新的潜在方法。此外,TMS可以检测中枢神经系统神经回路的活动,补充SCI严重程度的生理评估。本综述介绍了SCI的病理生理学以及TMS的基本原理和分类。我们主要关注TMS在SCI的生理评估以及运动功能障碍、神经性疼痛、痉挛、神经源性膀胱、呼吸功能障碍和其他并发症的治疗方面的最新研究进展。本综述为脊髓损伤的评估和治疗提供了新的思路和未来的方向。
摘要 目的 除矢状线对齐外,还强调了横平面参数 (TPP) 和旋转半脱位对患者报告结果的影响。退行性脊柱侧弯成因的假设之一是椎间盘退化,伴有轴向椎体 (AVR) 和椎间旋转 (AIR) 增加。因此,脊柱侧弯早期的 TPP 分析似乎特别令人感兴趣。本研究旨在评估成人脊柱畸形 (ASD) 患者三维 (3D) 重建的可靠性。方法 30 名 ASD 患者接受双平面 X 线检查,并分为两组(Cobb 角 [ 30 � 或 \ 30 � )。测量脊柱参数和 TPP(顶端 AVR、主曲线上部和下部的 AIR)。四位操作员进行了两次 3D 重建。使用 ISO 标准 5725-2 分析观察者内和观察者之间的可靠性,以量化可重复性的全局标准偏差 ( S R )。结果平均 Cobb 角为 31 �,平均年龄 55 岁(70% 为女性)。顶端 AVR、上部和下部 AIR 的平均值分别为 16 � ± 15 �、6 � ± 6 � 和 5 � ± 5 �。脊柱骨盆参数 S R 低于 4.5 �。对于 Cobb 角 \ 30 � ,AVR 顶点、扭转指数、上部和下部的 S R 分别为 7.8 �、9.6 �、4.5 � 和 4.9 �
脊髓损伤会中断大脑与脊髓中负责行走的区域之间的通讯,导致瘫痪 1,2 。在这里,我们通过大脑和脊髓之间的数字桥梁恢复了这种通讯,使患有慢性四肢瘫痪的患者能够在社区环境中自然地站立和行走。这种脑脊柱接口 (BSI) 由完全植入的记录和刺激系统组成,它们在皮质信号 3 与针对参与行走的脊髓区域的硬膜外电刺激的模拟调制之间建立了直接联系 4–6 。高度可靠的 BSI 可在几分钟内校准。这种可靠性在一年多的时间里一直保持稳定,包括在家中独立使用期间。参与者报告说,BSI 使他能够自然控制腿部的运动,以站立、行走、爬楼梯甚至穿越复杂的地形。此外,由 BSI 支持的神经康复改善了神经系统恢复。即使关闭 BSI,参与者也重新获得了拄拐杖在地面上行走的能力。这座数字桥梁建立了一个恢复瘫痪后自然运动控制的框架。
此预印本的版权持有人(此版本发布于2023年4月6日。; https://doi.org/10.1101/2023.04.04.06.535786 doi:biorxiv Preprint
宫颈脊柱骨髓病(CSM)是一种慢性压缩脊髓病变(Rao,2002; McCormick等,2003)。这是成年人中最常见的脊髓损伤形式,尤其是在老年患者中(McCormick等,2020)。在产生不可逆的脊髓损伤之前识别早期症状并提供有效的治疗非常重要(Edwards等,2003)。磁共振图像(MRI)通过可视化脊髓压缩的解剖学范围和脊髓内耗尽信号的变化而广泛用于CSM诊断(Takahashi等,1987; Al-Mefty等,1988; Ramanauskas et al。 1993; Shabani等人,2019年)。常规MRI通常包括T1和T2加权图像(T1WI和T2WI),可以提供椎骨,脊髓和周围软组织的高分辨率图像(Harkins等,2016)。然而,T1和T2信号强度的改变仍然限制了CSM早期阶段的诊断(Karpova等,2010)。需要一种敏感且可重复的成像技术来早期诊断和定量脊髓压缩。定量MRI可能是一种选择,因为T1映射显示了临床潜力(Maier等,2019; Maier等,2020),而T2和Proton密度(PD)映射很少有报道。合成MRI可以提供定量映射,包括T1,T2和PD映射以及多种对比度加权成像,例如T1-,T2加权图像,同时(Warntjes等,2008)。合成MRI技术已在许多区域广泛使用,并且在大脑,骨骼,骨骼,乳房,前列腺和腰椎椎间盘变性中表现出良好的诊断性能(Hagiwara等,2017; Cui et al。,2020; liu et al。据我们所知,CSM患者没有合成MRI的应用。因此,我们的研究旨在探索
优先 不涉及中间淋巴管或血管 直接途径 从蛛网膜脑膜到锁骨下静脉 可能是主要途径 次要途径到头皮淋巴管和淋巴结 引流到锁骨下静脉 脑脊液再循环进入血管循环 类似于神经 大脑和神经的终末脑脊液引流都是锁骨下静脉 小管结构 通道嵌入周围组织 丛状 以一组通道的形式行进 缺乏瓣膜/肌肉壁 通常为单细胞层厚度
宫颈脊髓损伤后的手功能丧失严重损害了功能独立性。我们描述了一种在一个完全宫颈四肢瘫痪(C5美国脊柱损伤关联量表a)中,使用便携式全植入式脑部计算机界面的一个完全宫颈四肢瘫痪量(C5美国脊柱损伤关联量表a)的方法来恢复手动掌握的能力控制。大脑 - 计算机界面由放置在主要手动皮层上的硬膜下表面电极组成,并连接到锁骨下方皮下植入的发射器,从而可以连续读取皮层学活性。运动意愿来触发主要手的功能性电刺激。移动信息信息可以在29周内的阶段性研究中进行一致的解码,平均准确性为89.0%(范围为78–93.3%)。在各种上肢任务的速度和准确性中都观察到了改进,包括提起小物体并将对象传输到特定目标。在开环试验期间,在家解码的准确性达到91.3%(范围80-98.95%),在闭环试验期间的授予率为88.3%(范围77.6-95.5%)。重要的是,本研究未探索功能结果和解码器指标的时间稳定性。完全植入的大脑 - 计算机界面可安全地用于可靠地从运动皮层中移动,从而可以准确地对手掌握。
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
