纳米材料的改性、薄膜涂层、纳米晶尖晶石的合成、石墨烯和 MXene 等二维材料的合成和表征、金属基复合材料、摩擦搅拌加工、可生物降解材料的非常规加工。通过太阳能电池实现绿色能源。
多铁性纳米复合系统 掺杂多铁性材料 用于器件应用的纳米晶尖晶石铁氧体 自旋电子材料 用于医疗应用的生物功能化材料 稀磁系统 稀磁电介质 微波吸收特性 碳纳米管和还原氧化石墨烯 第一原理密度泛函理论计算(DFT)。
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
我们在Co K-边缘上呈现理论XANES光谱,并结合DFT+U计算,以研究CO 3 O 4正常尖晶石的电子和磁性特性和镍掺杂系统CO 3 -x Ni X O 4。已经考虑了镍掺杂系统的两种配置:一个镍原子分别替换为四面体和八面体钴的配置。CO K-GEDGE-XANES频谱在CO 3 O 4正常尖晶石中显示了两个预峰,而在掺杂系统的情况下只观察到一个预峰。我们将掺杂系统中一个预峰的失望归因于向四面体钴3 d空状态的高能转移。我们证明,镍掺杂导致四面体钴的氧化态略微增加,而八面体钴的氧化态几乎保持不变。此外,镍在代替八面体钴时会产生磁化,并有助于渲染Co 3 O 4一个半金属系统,而当镍替代四面体钴时,这种磁化会降低。
使用自动燃烧的溶胶 - 凝胶方法合成镍铝(NIAL 2 O 4)纳米颗粒。制备的纳米颗粒分为四个部分,并在700、900、1100和1300℃时钙化,并进行了本研究。使用粉末X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDS),傅立叶变换和红外(FT-IR)光谱镜(FT-IR)光谱和UV-VIS光谱技术来表征吸收的纳米颗粒。X射线衍射模式证实了尖晶石结构和FD3M空间组。Scherrer公式用于计算结晶石尺寸,并在5.78至20.55 nm的范围内发现,而晶格参数的范围为8.039至8.342Å。在142.80至187.37 nm的范围内发现平均晶粒尺寸,而间间距的范围为2.100至2.479Å。FTIR光谱显示在400至3450 cm -1的范围内显示了六个吸收带,并确认了尖晶石结构。光条间隙(E G)随钙化温度降低,并在4.2129-4.3115EV范围内发现。关键字:镍铝制纳米颗粒; Sol-Gel自动燃烧法;钙化温度;结晶石尺寸;粒度;元素分析; IR和UV-VIS光谱PACS:75.50.GG,61.05.cp,68.37.hk,78.40.fy,33.20.ea,42.70.qs
x cd x x fe 2 o 4(x = 0.00,0.01,0.01,0.03,0.05,0.07,0.09)由共同途径准备。准备后,样品在温度900°C下烧结6小时。不同的表征技术,例如XRD(X射线划分),FTIR(傅立叶转换 - 红外 - 光镜检查),UV-VIS。和IV-特征术用于探索掺杂元件(CD)对纳米粒子的电,结构和光学特性的影响。XRD数据证实了Fe2O3的第二阶段的材料的单相,平均晶体大小在38.09-45.15 nm的范围内。在8.4471Å到8.4763Å中发现的准备材料的平均晶格常数值。在FTIR数据中,在所有样本中都发现了一个突出的频段,在某些样品中,在400-4000cm-1的范围内发现了第二个频段。IV观察性揭示了DC抗药性对温度的依赖性以及在0.1365到0.4332 EV/1000K的范围内的活化能值(∆𝐸𝐸)的依赖性。紫外线。分析证实了平均波长286 nm的所有样品的吸收峰。在此波长吸收下,所有样品的吸收范围为2.8722-3.2956(A.U)。CD浓度负责减少饱和磁性和损耗的降低。由于合适的特性,这些材料在录制媒体,高频应用和电子工程等许多分支等不同领域都有用。(2024年10月16日收到; 2024年12月11日接受)关键词:纳米结构,共凝结法,XRD,晶体大小,电阻率,激活能量1.引言尖晶石铁氧体是一类带有通用式AB 2 O 4的磁性材料,其中A和B代表不同的金属阳离子,O是氧。它们具有称为尖晶石结构的立方晶体结构,以矿物尖晶石的名字命名。尖晶石铁氧体表现出磁性,电气和结构特性的组合,使其在广泛的应用中有用,包括磁性存储,变压器,电感器和生物医学设备[1]。
[31] K.A.M.Attia,A.H。Abdel-Monem,A.M。 Ashmawy,A.S。 Eissa,A.M。 Abdel-raoof,高度敏感的尖晶石纳米晶体锌铬铁矿的构建和应用装饰了多壁碳纳米管修饰的碳糊电极(Zncr 2 O 4 @MWCNT/CPE)用于电化学测定甲藻酸苯甲酸苯甲酸酯及其替代剂的苯甲酸酯和绿色化学评估:绿色化学评估: 12(2022)19133– 19143。 https://doi.org/10.1039/d2ra02685f。Attia,A.H。Abdel-Monem,A.M。 Ashmawy,A.S。 Eissa,A.M。 Abdel-raoof,高度敏感的尖晶石纳米晶体锌铬铁矿的构建和应用装饰了多壁碳纳米管修饰的碳糊电极(Zncr 2 O 4 @MWCNT/CPE)用于电化学测定甲藻酸苯甲酸苯甲酸酯及其替代剂的苯甲酸酯和绿色化学评估:绿色化学评估:12(2022)19133– 19143。 https://doi.org/10.1039/d2ra02685f。12(2022)19133– 19143。https://doi.org/10.1039/d2ra02685f。https://doi.org/10.1039/d2ra02685f。
后面的印刷:Lankauf K.,GórnickaK。,BłaszczakP。,Karczewski J.在八面体地点,《国际氢能杂志》,第1卷。48,ISS。 24(2023),pp。 8854-8866,doi:10.1016/j.ijhydene.2022.12.01348,ISS。24(2023),pp。8854-8866,doi:10.1016/j.ijhydene.2022.12.013
orcid ID:https://orcid.org/0000-0002-3745-8133出版物:[1] Ross N.L.和Meagher E.P.(1984)在模拟压缩下H 6 Si 2 O 7的分子轨道研究。美国矿物学家69:1145-1149。[2] Ross N.L。和McMillan P.(1984)MGSIO 3 Ilmenite的拉曼光谱。美国矿物学家69:719-721。[3] Akaogi M.,Ross N.L.,McMillan P.和Navrotsky A.(1984)Mg 2 SIO 4多晶型物(橄榄石,改性尖晶石和尖晶石) - 氧化物熔体溶液量热法,相位关系和晶格振动模型的热力学特性。美国矿物学家69:499-512。[4] Ross N.L., Akaogi M., Navrotsky A., Susaki J., and McMillan P. (1986) Phase transitions among the CaGeO 3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation.地球物理研究杂志91:4685-4696。[5] McKelvey M.J.,O'Bannon G.W.,Larson E.M.,Marzke R.F.,Eckert J.和Ross N.L.(1986)新离子插入化合物(NH 4 +)的合成,表征和性能0.22 Tis 2 0.22-。材料研究公告21:1323-1333。[6] McMillan P.F.和Ross N.L.(1987)Al 2 O 3圆锥和MGSIO 3 Ilmenite的热容量计算。矿物质的物理和化学14:225-234。[7] Ross N.L. 和Navrotsky A. (1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。 矿物质的物理和化学14:473-481。 美国矿物学家72:984-994。[7] Ross N.L.和Navrotsky A.(1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。矿物质的物理和化学14:473-481。美国矿物学家72:984-994。[8] Geisinger K.L.,Ross N.L.,McMillan P.和Navrotsky A.(1987)K 2 Si 4 O 9:玻璃,薄板和韦迪特型相的能量和振动光谱。[9] Hazen R.M.,Finger L.W.,Angel R.J.,PreWitt C.T.,Ross N.L.,Mao H.K.,Hadidiacos C.G.,Hor P.H.,Meng R.L.和Chu C.W.(1987)y-ba-cu-o超导体中相的晶体学描述。物理评论B35:7238-7241。[10] Hazen R.M.,PreWitt C.T.,Angel R.J.,Ross N.L.,Finger L.W.,Hadidiacos C.G.,Veblen D.R.,Heaney P.J.,Horp.j.,Hor P.H.,Meng R.L.,Sun Y.Y.,Wang Y.Q.
使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴