通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
Keenan Ikking(马萨诸塞州2号,口头)完成了他的本科生和荣誉学位,目前正在Witwatersrand大学攻读硕士学位。 他的研究着重于替代剪接,使用长阅读测序研究RNA同工型多样性。 与传统方法相比,这种方法在理解基因变异方面有更大的细节。 他也对先天免疫系统,尤其是Rig-I等途径以及它们对病毒感染的反应感兴趣。 他的工作通过替代剪接探讨了这些途径的调节,重点是潜在的治疗靶标,尤其是与Covid-19这样的疾病有关。 基南的跨学科研究结合了计算生物学和基因组学,有助于个性化医学和免疫系统研究的进步。Keenan Ikking(马萨诸塞州2号,口头)完成了他的本科生和荣誉学位,目前正在Witwatersrand大学攻读硕士学位。他的研究着重于替代剪接,使用长阅读测序研究RNA同工型多样性。与传统方法相比,这种方法在理解基因变异方面有更大的细节。他也对先天免疫系统,尤其是Rig-I等途径以及它们对病毒感染的反应感兴趣。他的工作通过替代剪接探讨了这些途径的调节,重点是潜在的治疗靶标,尤其是与Covid-19这样的疾病有关。基南的跨学科研究结合了计算生物学和基因组学,有助于个性化医学和免疫系统研究的进步。
图1:A:Majiq使用剪接图(由局部剪接变化(LSV)组成)量化剪接。LSV定义为一组进入或从参考外显子出发的连接。对于每个结,Majiq估计在(PSI或ψ)中剪接的百分比,这是一个连接用法的度量。b:Majiq-临床检测两种类型的异常值,离群LSV(OLSV)和私有LSV(PLSV)。OLSV是异常值,其中患者和对照之间的剪接图是相同的,但是PSI却不同。plsv是患者独有的剪接变体,在控制集中最小示例(用户定义,默认情况1)中包含。c:Majiq-Clin作为来自患者和对照组的输入RNA-seq数据以及GFF3注释。然后,Majiq-build为每个基因构建一个剪接图并进行混杂校正。PLSV。clin然后为每个患者创建组合剪接图和对照组,并使用majiq-drigant量化LSV。clin然后向临床医生输出候选LSV和基因列表,按类型(PLSV,OLSV)和ψ-GAP订购。d:与1、10、50个线程的运行时和内存使用情况比较。顶行:LeafCutterMD使用默认的BAM-to-gunc步骤(无与伦比)运行。中间行:与上面相同,但内部脚本添加到并行化叶cuttermd bam-to-gunc(虚线)。
对基因或基因产物的有害影响(保护,进化,剪接影响等))美国医学遗传与基因组学学院(ACMG)的标准在15个预测因子中分析了将其归类为致病性。 2。 根据PM1, pdx1 c.571a> g(p.lys191glu),处于杂合性的状态,被分类为具有不确定意义的变体(位于突变热点和/或关键且良好的功能域(例如 酶的活性位点)没有良性变化); pm2(不存在对照(或很少经常隐性)); PP3(多种计算证据支持对基因或基因产物的有害影响(保护,进化,剪接影响等)))在15个预测因子中分析了将其归类为致病性。2。pdx1 c.571a> g(p.lys191glu),处于杂合性的状态,被分类为具有不确定意义的变体(位于突变热点和/或关键且良好的功能域(例如酶的活性位点)没有良性变化); pm2(不存在对照(或很少经常隐性)); PP3(多种计算证据支持对基因或基因产物的有害影响(保护,进化,剪接影响等))标准,在15个预测因子中进行了分析,其中14个将其归类为致病性,并具有中等效应。数据库中未报告此变体。PTF1A基因未报告致病性变异。
背景,意义和假设:结直肠癌(CRC)是美国与癌症相关死亡的第二大原因。(Siegel Rl。等,CA Cancer J Clin。,2024年)约43%的CRC病例涉及KRAS突变,该突变激活RAS/MAPK途径,并且与野生型KRAS相比,它与预后明显较差。(McCall,J。L.等,分子和细胞生物学,2016年)。通过RAF/MEK/ERK支架蛋白的信号传导,KSR1在CRC肿瘤的起始,化学耐药性和上皮 - 间质转变(EMT)中至关重要。对EMT相关转录本翻译的事先分析表明,上皮基质相互作用1(EPSTI1)在CRC细胞中优先以KSR1依赖性方式翻译,并且EPSTI1是必不可少的,并且足以且足以促进N-钙粘蛋白转换,在促进肿瘤细胞迁移和入侵中起关键作用。KSR1驱动TIC形成的机制促进了TICS向DTP的过渡并调节对下游效应子(例如EPSTI1)的转录后控制,尚不清楚。对RAS突变的CRC细胞中KSR1调节的RNA剪接和下游效应子的全面理解可能揭示出治疗性剥削的新脆弱性。我们假设KSR1通过调节RNA结合蛋白来控制RNA剪接,这是驱动CRC中EMT必不可少的机制。KSR1的丧失有望引发RNA轮廓的广泛变化,阐明了先前未识别的调节剂以及替代剪接的途径,燃料结直肠癌发病机理。
丝氨酸/精氨酸富含剪接因子3(SRSF3)是一个重要的多功能剪接因子,在过去三十年中引起了人们的注意。SRSF3的重要性是由所有动物中令人印象深刻的保守蛋白序列和替代外显子4所证明的,这代表了一种自动调节机制,可维持其适当的细胞表达水平。最近一直发现SRSF3的新功能,尤其是其致癌功能。srsf3通过调节许多靶基因的RNA生物发生和加工的几乎所有方面,在许多靶基因的过程中起着至关重要的作用,因此在过表达或无调时会导致肿瘤发生。本综述更新并突出了SRSF3的基因,mRNA和蛋白质结构,SRSF3表达的调节机制以及SRSF3靶标的特征和结合序列,这些序列有助于SRSF3在肿瘤和人类疾病中有助于多样的分子和细胞功能。
近年来,我的研究小组的工作集中在与生理和病理条件下的MRNA剪接和聚腺苷酸化有关的一系列项目上。其中一个项目发现了mRNA输出和组蛋白PREMRNA的哺乳动物3'末端处理因子CF I的新功能。最近,我们表明线粒体应力会影响基因组大规模的替代剪接,因此可能有助于神经退行性疾病的发病机理。目前,我们专注于三个主要研究线。第一个集中在SRPK2上,SRPK2是一种针对SR(丝氨酸/精氨酸富域)剪接因子家族的蛋白激酶。我们目前正在研究DNA损伤通过SRPK2活性的调节影响替代剪接的机制。第二个项目涉及将选择替代外显子选择与转录的机制。具体而言,我们正在研究梵天是哺乳动物SWI/SNF染色质复合物的组成部分,如何通过与聚烯基化机制的组件相互作用来促进替代末端外显子的选择。最近,我们在肌萎缩性侧索硬化症的细胞和小鼠模型中启动了miRNA表达的表征。并行,我们目前正在研究RNA结合蛋白在基因组稳定性和神经变性中的作用。努力和激发年轻研究人员的能力。能够建立新的跨学科方法。简历生于索伦戈(CH),1963年7月9日。为了解决所有这些问题,我们使用了生化和分子方法的组合,例如CRIPR/CAS9基因组编辑,显微镜,体外细胞培养系统(包括IPSCS划分的细胞TYE)和转基因小鼠模型。已在实验室接受了20多名本科生和10名前后研究员的培训,其中许多人从事学术研究中的成功职业。我们一直与意大利和国外的许多研究小组合作。这包括由瑞士国家科学基金会资助的大型跨学科网络项目。1983-1987硕士学位。帕维亚大学
近年来,耐多药病原体备受关注。因此,在形势失控之前,迫切需要新的抗真菌和抗菌药物靶点。内含肽是一种多肽,它不需要辅因子或外部能量就能从外显肽自我剪接,从而导致外显肽片段的连接。内含肽存在于许多生物体中,包括人类病原体,如结核分枝杆菌、新型隐球菌、格特隐球菌和烟曲霉。由于内含肽元素不存在于人类基因中,因此它们是开发抗真菌和抗生素的有吸引力的药物靶点。到目前为止,已经报道了一些内含肽剪接抑制剂。金属离子如 Zn 2+ 和 Cu 2+ 以及含铂化合物顺铂通过与活性位点半胱氨酸结合来抑制结核分枝杆菌和新型隐球菌中的内含肽剪接。发现小分子抑制剂 6G-318S 及其衍生物 6G-319S 可抑制新生隐球菌和格特隐球菌中的内含肽剪接,MIC 为纳摩尔浓度。内含肽还用于许多其他应用。内含肽可用于使用小分子激活细胞内的蛋白质。此外,分裂内含肽可用于在实验性基因治疗中传递大基因,并利用毒素-抗毒素系统杀死混合微生物群中的选定物种。此外,分裂内含肽用于合成环肽和开发细胞培养模型,以在生物安全级 (BSL) 2 设施中研究包括 SARS-CoV-2 在内的传染性病毒。这篇小型评论讨论了内含肽在药物发现和治疗研究中的最新研究进展。
雄激素受体 (AR) 是侵袭性前列腺癌的主要驱动因素。在用雄激素受体信号抑制剂 (ARSi) 进行初步治疗后,AR 信号的重新激活会导致耐药性。AR mRNA 的替代剪接产生 AR-V7 剪接变体,这是目前无法用药的 ARSi 耐药机制:AR-V7 缺乏配体结合域,激素和抗雄激素拮抗剂在此起作用,但仍可激活 AR 信号。我们发现 PKC β 是 AR 基因组位点转录和剪接的可用药调节剂。我们确定了一种临床 PKC β 抑制剂与 FDA 批准的抗雄激素联合使用,作为抑制 AR 基因组位点表达(包括 AR-V7 表达)同时拮抗全长 AR 的方法。PKC β 抑制可降低总 AR 基因表达,从而降低 AR-V7 蛋白水平并使前列腺癌细胞对当前的抗雄激素疗法敏感。我们证明这种组合可能是 AR-V7 阳性前列腺癌的可行治疗策略。