考虑到多层介电镜的影响,我们评估了单个发射极和光腔内的辐射场之间的精确偶极耦合强度。我们的模型允许一个人自由地改变腔的共振频率,光或原子过渡的频率以及介电镜的设计波长。耦合强度是针对具有未结合频率模式的开放系统得出的。在非常短的空腔中,用于确定其模式体积和定义的长度的有效长度不同,并且也发现与它们的几何长度有明显不同的分歧,并且辐射线在介电镜中最强。对于腔体比其谐振波长长得多,该模式体积通常从其几何长度中采用的模式进行接近。
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应
违反摩尔法律计算绩效的限制正在努力跟上不懈的驱动力,以实现高性能芯片,因为性能瓶颈已经出现了,扩展范围在所有方面都达到了极限。扩展摩尔定律的一种方法是通过异质整合,这可以随着性能水平的提高铺平到未来设备的道路。随着芯片的变小,越来越强大,连接不断增长的晶体管数量的电线变得越来越薄且包装更密集。产生的阻力增加和过热会导致信号延迟,并限制中央处理单元(CPU)时钟速度。其他问题包括大规模集成电路(LSI)操作中的频率限制,与电池相关的电源限制和冷却问题。在改善移动计算和图形处理系统中的性能时,一个考虑因素是确保工作频率和功耗均未增加。另一个考虑因素是,通过功耗效率改善内存访问带宽,因此必须具有广泛的输入/输出(I/O)内存总线而不是高频接口。此外,随着系统性能的改善,此类系统中的内存能力变得越来越重要。3D芯片技术有助于解决几个问题,这些问题挑战了芯片的性能提高和加工尺寸的减少。这种方法通过称为晶圆键的过程在另一个芯片或集成电路(IC)上层。TSV还可以实现更有效的散热并提高功率效率。与此使用透过的硅VIA(TSV)制造方法垂直堆叠多个芯片组件,从而产生更快,更小和更低的CPU。
两个热恢复冷水机中的每个都有5个50吨滚动压缩机模块,总共有500吨冷却能力。冷却器全年运行,可以同时产生42F冷藏和130F热水。但是,为了进一步提高能源效率,现在将热量冷却器产生103F热水。在42/130时,冷却器展示了9.36的组合加热/冷却COP。另外,当游客中心和博物馆首次开放时,目的是让冷水机运行,但是在微调控制系统之后,发现建筑温度 - 只能使用一个热恢复冷水机维持湿度。第二个冷却器用作备份,但在峰值冷却负载条件下已启用。
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。
如今,多个生物电化学系统 (BES) 模块的堆叠配置被认为是成功扩大该技术规模的最佳选择,无论是发电微生物燃料电池 (MFC) 还是耗电微生物电解或电合成电池 (MEC 或 MES)。虽然并联电连接允许独立操作堆叠中的每个 BES 而不会出现重大问题,但从能量转换的角度来看,串联堆叠的 BES 更具吸引力,因为它们的能量损失较低,并且可以在更高的电压下操作它们。然而,在串联连接的 MEC/MES 电池的情况下,高性能生物阳极可以将堆叠中性能较差的电池推到其“工作区”之外,导致不利的电位、不受控制的电压下降以及电活性生物膜的暂时或永久损坏。过去提出了一些电池平衡系统 (CBS),但需要电力电子方面的专业知识。在这项研究中,提出了一种基于商用二极管的简单、被动且低成本的 CBS。采用三台双室 MEC。进行了第一组实验,以表征电池并了解串联电池堆中电压不平衡的原因。然后,采用并验证了 CBS。
Fluence 是西门子和 AES 旗下的子公司,是全球领先的能源存储技术解决方案和服务公司,将技术公司的敏捷性与两大行业巨头的专业知识、愿景和资金支持相结合。在 AES Energy Storage 和西门子 Energy Storage 的开创性工作的基础上,Fluence 的目标是通过改变我们为世界提供能源的方式,创造一个更加可持续的未来。Fluence 提供经过验证的能源存储技术解决方案,旨在满足快速转变的能源格局中客户的各种需求和挑战,为 160 多个国家提供设计、交付和集成服务。
标记启用数据可见性Haystack有助于使用标签将数据归一化。标签告诉您数据是什么,并允许它可以轻松地识别分析,发现问题和问题。div> with,每个建筑项目都是独特配置的,这使得很难交换和分析数据。拉出所需的数据,请记住它与之相关的名称并将该点分配给设备。该过程花费了大量时间和资源来完成此操作。使用Haystack标记通过使数据更易于获取数据,从而改变了情况。数据现在与更面向系统的细节共享,并且可以更彻底地通过分析应用程序进行抽象和处理。
美甲师会接触美甲产品中的挥发性有机化合物 (VOC),但之前尚无研究测量过这些工人的 VOC 生物标志物。这项针对 10 名美甲师的研究旨在识别美甲沙龙中的 VOC 并探索空气浓度与生物标志物之间的关系。在工作班次期间,使用热解吸管采集个人和区域空气样本,并使用气相色谱/质谱 (GC/MS) 分析其中 71 种 VOC。在班次前后采集全血样本,并使用 GC/MS 分析其中 43 种 VOC。使用连续 CO 2 测量确定通风率。主要的空气 VOC 水平是甲基丙烯酸乙酯(中位数 240µg/m 3 )、甲基丙烯酸甲酯(中位数 205µg/m 3 )、甲苯(中位数 100µg/m 3 )和乙酸乙酯(中位数 639µg/m 3 )。甲苯(班次前中位数为 0.158µg/L,班次后为 0.360µg/L)和乙酸乙酯(班次前中位数为 <0.158µg/L,班次后为 0.510µg/L)的血液浓度在班次后明显高于班次前;由于甲基丙烯酸酯不稳定,因此未在血液中测量。根据在这 7 家美甲沙龙中测量的 VOC,我们估计大波士顿地区美甲沙龙的排放可能会对环境 VOC 产生影响。通风率并不总是符合 ASHRAE 的美甲沙龙指南。需要改变指甲产品配方并改善通风以减少 VOC 职业暴露。