Peng, L. (2012)。用于集成电路 3-D 堆叠的晶圆级细间距 Cu-Cu 键合。博士论文,南洋理工大学,新加坡。
a 哈尔滨工业大学计算机科学与技术学院,哈尔滨,中国 b LINEACT CESI,里昂 69100,法国 c 埃法特大学电气与计算机工程系,吉达 22332,沙特阿拉伯 d Persistent Systems Limited,那格浦尔,印度 e AGH 科技大学生物控制论与生物医学工程系,克拉科夫,波兰 f 克拉科夫理工大学计算机科学与电信学院计算机科学系,华沙 24,31-155,克拉科夫,波兰 g 波兰科学院理论与应用信息学研究所,Ba ł tycka 5,44-100,格利维采,波兰 h EIAS 数据科学实验室,苏丹王子大学计算机与信息科学学院,利雅得 11586,沙特阿拉伯 i 梅努菲亚大学理学院数学与计算机科学系,32511,埃及j 埃及梅努菲亚大学计算机与信息学院信息技术系
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
b'Abstract本文讨论了将双重/伪证机器学习(DDML)与堆叠配对,这是一种模型平均方法,用于结合多个候选学习者,以估计结构参数。除了传统的堆叠外,我们还考虑了可用于DDML的两个堆叠变体:短堆栈利用DDML的交叉拟合步骤可大大减轻计算负担,并汇总堆叠量强制执行常见的堆叠权重,而不是交叉折叠。使用校准的模拟研究和两种估计引用和工资中性别差距的应用,我们表明,与基于单个预先选择的学习者的常见替代方法相比,堆叠的DDML对部分未知的功能形式更强大。我们提供实施建议的Stata和软件。JEL分类:C21,C26,C52,C55,J01,J08'
van der waals工程是一种通过堆叠二维材料来调节材料特性的技术,并且已用于从超导性到分数量子异常霍尔效应的应用中。这项研究成功的关键在于创新的堆叠技术,该技术以垂直角度堆叠两个超薄的Nbocl2,以实现极化纠缠 - 量子计算的基本要求。根据团队的说法,极化 - 纠缠的光子对一直是量子光学实验的基础,但通常需要使用较大和较大的材料。通过范德华工程,可以在没有这些大型设备的情况下生成极化的光子。
•20MW / 200MWH•与威斯康星州的Alliant Energy合作•2027年投入运营•由美国DOE选择50%的成本共享•安装在WI的WI的退休煤炭设施上•美国供应链的ITC和成本降低< / div> < / div>
是由最近提出的镍3 ni 2 o 7交替交替的单层三层堆叠结构的动机,我们使用从头开始和随机相近似技术全面研究了该系统。我们的分析揭示了这种新颖的LA 3 Ni 2 O 7结构与其他Ruddlesden-Popper镍超导体(例如类似的电荷转移差距值和E G轨道的轨道选择性行为)之间的相似性。压力主要增加了ni g波段的带宽,这表明这些E G状态的巡回特性提高了。通过将细胞体积比0从0.9更改为1.10,我们发现La 3 Ni 2 O 7中的双层结构总是比单层三层堆叠LA 3 Ni 2 O 7具有低的能量。此外,我们观察到从三层到单层sublattices的“自我兴奋剂”效应(与整个结构的每个位置的平均每个位置的1.5电子相比,相比之下),通过总体电子掺杂,这种效果将增强。此外,我们发现了一个限制在单层的d x 2 -y 2波配对状态。由于单层之间的有效耦合非常弱,因此由于中间的非耐受性三层,这表明该结构中的超导过渡温度t c应远低于双层结构中。
van der waals(vdw)堆叠是一种强大的技术,可以通过逐层晶体工程在凝结物质系统中实现所需的特性。一个了不起的例子是控制人工堆叠的VDW晶体之间的扭角,从而实现了从超导性到强相关的磁性范围内的Moiré结构中非常规现象的实现。在这里,我们报告了VDW磁铁CRI 3晶体中不寻常的120°扭曲断层的出现。在去角质样品中,我们观察到厚度低于10 nm的垂直扭曲结构域。扭曲结构域的尺寸和分布在很大程度上取决于样品制备方法,而合成的未脱落样品显示出比去角质样品的厚域更厚的域。冷却引起不同扭曲结构域之间相对种群的变化,而不是先前假定的结构相过渡到菱形堆积。样品制造过程引起的堆叠障碍可能解释了CRI 3中观察到的未解决的厚度依赖性磁耦合。
张量凝胶技术提供了增加的可用容量,并减少了充电所需的时间。此外,张量凝胶细胞最大程度地减少了细胞内部的热量演化,从而提高了电池的效率和使用寿命。张量凝胶电池的无填充 /无溢流意味着不需要浇水。及其较大的内部表面积,机会充电也是可能的。在两班应用中也可以用作替换或替代标准电池的替代品。结果是一种多功能维护的电池技术,设定了阀门受铅酸电池的新标准。
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。