• Two main types of DRI processes: Gas-based DRI and Coal-based DRI • Iron ore pellets, typically containing a mixture of iron oxide and other elements are prepared • Iron ore pellets undergo chemical reactions with reducing agent (natural gas or carbon from coal), resulting in the removal of oxygen to produce direct reduced iron in the lower part of the shaft • The DRI along with scrap steel, is then charged into the Electric Arc炉子•电力用于产生电弧,该电弧融化炉子中的DRI和废料钢•添加合金或其他添加剂以实现所需的钢组成•由于将化石能源用作还原剂和非可再生电力•目前通过Dri
1。引言减少腐蚀带来的重大经济损失的最流行策略是使用有机抑制剂[1-5]。此外,正在进行研究以确定在非常低浓度的环境中是否可以使用腐蚀抑制剂。为了在低浓度的特定抑制剂的存在下达到高水平的保护效率,二级分子和/或离子通常需要通过合作吸附或腐蚀金属表面上的合作吸附或络合来增强抑制剂的吸附[6-10]。在当前工作中,检查了硫库的吸附及其在碳钢表面存在的锌离子存在下的潜在增强。酰胺化合物从历史上被认为是腐蚀强大的抑制剂[11-14]。因此,提高硫库抑制剂溶液对锌离子的吸附可能会导致高抑制效率。
在高强度钢(HSS)梁中使用周期性的基于椭圆形的网络(EBW)开口在近年来越来越受欢迎,这主要是由于高强度重量比和降低地板高度,这是由于允许不同的公用事业服务通过网络开放的原因。但是,这些部分容易受到Web-Post屈曲(WPB)故障模式的影响,因此必须使用准确的设计工具来预测Web-Post屈曲容量。因此,本文旨在通过(EBW)开口(EBW)开口来预测HSS光束中WPB容量的各种机器学习(ML)方法的能力,并评估现有分析设计模型的性能。为此,考虑了S460,S690和S960钢等级,开发和验证了数值模型,目的是进行总共10,764个Web-POST有限元模型。该数据用于训练和验证包括人工神经网络(ANN),支持向量机回归(SVR)和基因表达编程(GEP)的不同ML算法。最后,本文提出了用于WPB电阻预测的新设计模型。结果将详细讨论,并将其与数值模型和现有的分析设计方法进行了比较。基于机器学习预测的提议的设计模型被证明是功能强大,可靠和高效的设计工具,可用于对HSS梁的WPB电阻进行定期(EBW)开口的WPB电阻。
我们已尽一切努力确保详细信息准确无误。但是,ACV UK Limited 不保证任何信息的准确性或完整性,也不对信息中的任何错误或遗漏承担责任。ACV UK Limited 保留进行更改和改进的权利,这可能需要更改产品规格,恕不另行通知。
绿色抑制剂。但是,也有某些例外。例如,无机稀有元素(灯笼盐)成分具有低毒性和良好的生物降解性。然而,有机绿色腐蚀抑制剂的起源可以包括许多碱,例如离子液体,药物,植物提取物和合成抑制剂(图2)。具体来说,天然产品,例如植物(例如油及其衍生物)。因此,由于植物可用,可生物降解,可用于减少污染量,因此被认为是化合物的重要自然来源。此外,可以轻松提取植物,以低成本和生态系统的低污染。此外,它们可以在酸性溶液中发挥作用,因为它们具有多功能化学,物理和生物学特征。大多数绿色抑制剂可以在室温下通过物理和化学相互作用吸附到金属表面[33]。对环境影响低的腐蚀抑制剂在各种工程应用中为环境带来了重大的经济利益。植物通过将其作为腐蚀抑制剂重新利用,从而构成一个显着的环境挑战,从而减少了它们的整体环境影响。关于这些天然产品的非毒性,它们的应用对人类健康的危害仍然不那么危害。的确,提取方法和应用程序不会引入任何可能冒着人类健康风险的污染物或危险物质。因此,除了使用各种表征技术和电化学测试的有效性外,还必须评估其与工业应用的安全性和兼容性[34]。
按地点划分的项目活动是:工程设计和创新大楼,宾夕法尼亚州立大学,宾夕法尼亚大学公园 - 研究团队会议,计算活动和讨论,用于测试设备的准备,试验规模测试,制造和指导。材料研究所,宾夕法尼亚州公园宾夕法尼亚州立大学 - 材料表征,测试,教学,演示和结果讨论。萨克特大楼,宾夕法尼亚州大学公园宾夕法尼亚州立大学 - 实验室规模的实验性工作与Bio-Char。宾夕法尼亚州立学院宾夕法尼亚州立大学的民用基础设施测试和评估实验室 - 较高生产量的生物char和教学的试验规模测试。Arcelormittal,加拿大汉密尔顿 - 生物科颗粒的测试和评估;根据需要进行电弧炉(EAF)测试。am/ns calvert,Calvert,Al -Al -Internal Test和Bio -Pellets的内部测试和验证;根据需要进行EAF测试。
本文对环境友好型抑制剂的获取及其在实践中的应用进行了研究。绿色抑制剂的来源是猪毛菜植物,研究了从该植物中提取绿色抑制剂提取物的方法。研究了所得提取物在0.5 M HCl 溶液中作为绿色抑制剂对碳钢结构的防腐作用。在确定猪毛菜植物绿色抑制剂的有效性时,在两种不同温度(298 K 和 313 K)和不同浓度(200 mg/L、400 mg/L、600 mg/L 和 1000 mg/L)下进行了实际实验。利用朗缪尔和特姆金等温线研究了绿色抑制剂在钢表面的吸附。还研究了温度和浓度对腐蚀速率的影响。采用重量法测定绿色抑制剂的有效性,发现其最大浓度为 91.86%。通过扫描电镜分析研究了该缓蚀剂在钢材表面及试验后钢样中的作用机理,结果表明,猪毛菜提取物的主要成分中含有杂原子有机化合物,是一种良好的绿色缓蚀剂。
病例钢钢通常用于齿轮和轴承应用。这类材料的低碳含量可为不同生产技术(如形成,锻造和焊接)提供出色的加工性。但是,低碳含量限制了这组材料的可靠性。一种特殊的热处理被称为病例硬化,对于提高这些材料的可耐用性是必要的。这种热处理是化石或硝化的,然后进行了亚分化的强化操作以改善表面硬度。渗碳的局限性是该过程耗时,薄壁的零件可能会变形[1]。长时间的时间使这个过程不吸引小批量尺寸的织物。此外,发现仅马氏体结构在材料的耐磨性方面不利[2]。说到耐磨性,仅产品的磨损可能导致多达全国国内生产总值的4%的经济成本[3]。低合金钢的病例硬化主要导致马氏体微观结构,因为几乎所有碳都在马氏体内捕获[4]。调节这些产品通常是为了改善工件的延展性。关于耐磨性,诸如碳化物之类的次级阶段比单纯的马氏体微观结构更优选。为了形成碳化物(VC)或碳化钨(WC)等碳化物,需要超过500℃的高温温度[5]。但是,这些形成碳化物的元素通常不存在或仅在病例钢钢内以较小的比率存在。它们的缺席阻碍了次级碳化物的降水的影响,从而限制了最终部分的耐磨性。因此,需要替代仅碳增强的替代方案,以进一步改善病例钢钢的部分。基于激光的定向能量沉积(DED-LB/M)Pro-VIDESA有望altertantiveto病例硬化,用于调整产品的表面硬度[6]。DED-LB/M中的灵活处理允许生成三维结构,修复磨损的表面或沉积耐磨性覆盖层到高度载荷的表面上。由于可以同时使用DED-LB/m同时使用多种粉末材料,因此可以局部调整最终工件的化学成分[7]。这种高灵活性打开了在需要的情况下在具有量身定制特性的自由形式表面上涂上涂料的可能性。应用的一个潜在领域是将渗碳产品代替仅以小批量制造的大零件。这样做,可以进行长时间的固定时间。DED-LB/M维修应用程序的巨大潜力也使当地磨损的配件进行翻新。使用DED-LB/M进行维修应用,需要产生具有与先前碳液材料相似的材料硬度的硬表面。知道只有固定钢的马氏体硬化产品的前提不利,可以添加进一步的合金元素,以提高关键特性,例如耐磨性或硬度。结合了例如,钨可以帮助改善固醇溶液加强以及高温耐药性的材料的性质[8]。
Safurex® (1) 是一种专为尿素工艺开发的耐腐蚀性极强的材料,尤其适用于汽提塔中遇到的严苛条件。该等级即使在氧气很少或没有氧气的情况下也能很好地抵抗氨基甲酸酯溶液。该材料由 Industeel 在 Alleima 的许可下以板材形式生产。超级双相 UR™ 2507 也适用于不太严苛的尿素-氨基甲酸酯环境。
高级高强度钢(AHSS)广泛用于汽车行业[1-7]。它们的高强度和延展性可以保证撞车性并减少汽车的整体体重,从而有助于更大的被动安全性和更少的污染排放[8-11]。在AHSS中,Martensitic Steels(MS-AHSS)用于生产对冲击安全性至关重要的汽车结构组件,例如前后保险杠梁,门抗入口杆,侧面凹凸增强型和屋顶横梁[12-14]。MS-AHSS的成功是其强度和延展性的结果,以及相对较低的成本[12,15]。但是,由于其微观结构,MS-AHSS特别容易受到氢的含量(HE)[16]。H可以在生产过程中被钢吸收,例如涂层,焊接,热处理,绘画[17]或在特定的服务条件下[12]。钢中氢(H)的存在可以降低强度,延展性,疲劳性和断裂韧性[2,12,17 - 21]。文献中已经描述了两个主要的现象:在明显的亚临界裂纹或最终断裂后的最终断裂,没有证据表明先前的裂纹形成和稳定的生长(在[22]中称为HESC和HEFT)。以前的情况是可以用断裂力学方法建模的,是文献中研究最多的情况,而没有亚临界裂纹生长的情况通常与延展性降低有关而没有强度损失[12,19,23 - 27]。MS-AHSS组件通常是制造的已经提出了几种机制来规定H的含义,以及其他机制:(i)HEDE(ii)帮助(iii)HAM [21,22,24,28]。