单光子光遗传刺激是神经科学中的关键工具,可以实现精确的、细胞类型特异性的神经回路调节。以完全可植入的宽场刺激器阵列的形式对这种技术进行小型化,可以在长期实验中询问皮质回路,并有望增强脑机接口以恢复感觉和运动功能。然而,对于基础科学和临床应用来说,这种技术必须达到在单列级别选择性激活感觉和运动表征所需的精度。然而,研究报告称,在受刺激的皮质区域内,神经元反应不同,有时甚至相互冲突。虽然循环网络机制会导致复杂的反应,但我们在这里证明,复杂性已经从神经元形态的层面开始。通过在第 2/3 层和第 5 层锥体神经元的详细模型中模拟光遗传反应,我们考虑了不同刺激强度下的真实生理动态,包括阈值、持续和去极化阻滞反应。我们的研究结果表明,皮质表面单个刺激器位置激活的神经元的空间分布可能不均匀,并且会随着刺激强度和神经元形态的变化而变化,这可能解释了早期实验中观察到的反应异质性。我们发现,由于神经元形态,激活会从光源横向扩散到几百微米。为了提高精度,我们探索了两种策略:优先在体细胞中表达通道视紫红质,这只对第 5 层神经元有效,以及缩小刺激光束,这可以提高两层的精度。我们的结果表明,在正确的光学设置下,可以实现单列精度的刺激,并且刺激器的光学增强可能比针对体细胞的基因改造提供更显著的精度改进。
摘要目标/假设糖尿病性胃病经常导致胃肠道症状令人衰弱。先前的不受控制的研究表明,经皮迷走神经刺激(TVN)可能会改善胃肠道症状。为宫颈电视在患有自主神经病和胃肠道症状的糖尿病患者中的影响,我们进行了一项随机,假手术,双盲的糖尿病(参与者和研究者对分配的治疗盲目)研究。方法本研究包括从丹麦的三个Steno糖尿病中心招募的成年人(20-86岁),其中有1或2型糖尿病,胃肠道症状和自主神经病。参与者被随机分配1:1以接收主动或假刺激。在连续的两个研究期间,主动的宫颈TVN或假刺激是自我管理的:每天四个刺激的1周和两个每日刺激的8周。主要结局指标是使用胃肠道症状症状指数(GCSI)和胃肠道症状评级量表(GSRS)测量的胃肠道症状变化。次要结果包括胃肠道运输时间和心血管自主功能。结果六十八名参与者被随机分为活跃组,而77个参与者被随机分为假手术组。在活跃中的六十三个,假手术组中有68位在研究期1中进行分析,而在研究期间分析了62个。与假相比(23分钟与-19分钟,p = 0.04)相比,活动组的胃排空时间增加了。电视良好。在研究期1中,主动和假电视导致症状相似(GCSI:-0.26±0.64 vs -0.17±0.62,p = 0.44; gsrs; gsrs:-0.35±0.62 vs -0.32 vs -0.32±0.59,p = 0.77;均值。在研究期2中,主动刺激还导致平均症状降低,与假刺激后观察到的症状相当(GCSI:-0.47±0.78 vs -0.33±0.75,p = 0.34; gsrs; gsrs; gsrs:-0.46±0.90 vs -0.90 vs -0.3555±0.79,p = 0.79,p = 0.50)。节段性肠道过渡时间和心血管自主神经自主神经测量没有差异(所有p> 0.05)。结论/解释宫颈TVN不能改善糖尿病患者和自主神经病患者的胃肠道症状。试验注册临床。
没有指示手术。正确选择符合特定标准的患者(基于从随机对照试验中的史学结果),他们努力地遵守植入物的使用情况并预先实施神经肌肉康复,改善功能恢复显着的成功成功,以及减少止痛药物。接受植入多卵形神经刺激的伤害性机械CLBP患者已受到医生和康复专家的治疗,他们磨练了从事多纤维神经刺激的经验。他们已经合作制定了共识和证据驱动的指南,以提高质量外,并在遇到此设备患者时协助提供者。医师和物理治疗师一起提供精确的以患者为中心的医疗管理,并具有优质的神经肌肉康复,以鼓励患者成为其植入物的专家和优质的脊柱运动,以帮助覆盖长期以来与CLBP相关的长期多发性功能障碍。©2024作者。由Elsevier Inc.代表美国康复医学大会出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在本研究中,我们开发了一个针对孤立纹状体的大规模生物物理网络模型,以通过使用网络产生的时空模式来优化潜在的纹状体内深部脑刺激,例如应用于强迫症。该模型使用改进的 Hodgkin-Huxley 小世界连接模型,而空间信息(即神经元的位置)是从详细的人体图谱中获得的。该模型产生将健康与病理状态区分开的神经元活动模式。使用三个指标来优化刺激方案的刺激频率、幅度和定位:整个网络的平均活动、腹侧纹状体区域的平均活动(使用模块化检测算法出现为定义的社区)以及整个网络活动的频谱。通过最小化上述指标与正常状态的偏差,我们指导深部脑刺激参数的位置、幅度和频率的优化。
在过去的二十年中,经颅磁刺激(TMS)已用于研究方案和神经疾病的临床治疗。在这项工作中,我们分析了经颅磁刺激设备的加热,目的是使用新颖的刺激线圈设计来减少它。设备的操作受刺激线圈过热的限制,因此在治疗过程中不断使用设备,并且设备的终生会受到影响。考虑使用同心电感器来划分电流的大小,分析的第一阶段包括研究电激发电路的响应。这是通过多物理分析补充的,磁场之间的耦合和两个不同的线圈几何形状之间的耦合,显示了生成的磁场的空间分布和周围刺激线圈周围空间中的温度上升。这项研究的主要贡献是使用有限元方法设计刺激线圈的设计,从而降低了设备的工作温度,考虑到实用的线圈几何形状。关键字:线圈,电路,有限元法,诱导电场,经颅磁刺激。
摘要:背景:中风是死亡的第三大主要原因,长期残疾,可以看作是弱点,肌肉张力的丧失,广义疲劳以及移动性自愿控制或限制的丧失以及感觉,运动和认知功能障碍。针对运动恢复的几项针对运动恢复的大型干预试验报告了参与者的运动性能,改善质量并在中风后恢复独立性的策略。因此,要找出基于神经可塑性的外部感受和本体感受刺激的有效性,可以改善中风的运动性能。方法论:主要研究人员收集了数据,所有中风患者由医学部提及PT,并进行了临床诊断。研究设计是通过实验前和前瞻性研究的随机对照试验。结果:使用卡方检验对148例患者进行了SD评估,学生对未配对的“ T”测试,Mann Whitney'U'测试和Wilcoxon签名的等级测试比较从所有数据中进行了比较。结论:在采用结果测量的干预后,实验组显示出比对照组的音调,平衡和运动质量的改善,所有测量均显示出流以及质量的显着改善。关键字:中风,运动,鲁德的概念,康复简介:中风是世界各地残疾的第三大主要原因。中风是成年人长期神经残疾的主要原因,所有中风幸存者在中风的急性阶段都有严重的功能问题。中风康复可以帮助恢复自我独立并改善生活质量。这对功能能力,独立,自我保健和生活质量的表现产生了巨大影响。康复的主要目标是帮助中风幸存者根据神经可塑性重新学习因脑损伤而丧失的技能。大多数中风幸存者都会受到身体功能障碍的负担,并且运动不足继续进入中风的慢性阶段,这些阶段对日常生活具有很大的影响。康复干预措施的主要目标是通过中风最大化UL运动恢复和功能独立性。康复的主要目标是帮助中风幸存者重新学习由于脑损伤而丧失的技能。这将最大化功能独立性,最大程度地减少长期残疾并增加
作者:Vaclav Kremen 1,2*、Vladimir Sladky 1,3*、Filip Mivalt 1,4*、Nicholas M. Gregg 1、Irena Balzekas 1,5、Victoria Marks 1,5、Benjamin H. Brinkmann 1,5、Brian Nils Lundstrom 1、Jie Cui 1、Erik K. St Louis 6、Paul Croarkin 7、Eva C Alden 7、Julie Fields 7、Karla Crockett 1、Jindrich Adolf 4、Jordan Bilderbeek 5、Dora Hermes 5、Steven Messina 8、Kai J. Miller 9、Jamie Van Gompel 9、Timothy Denison 10、Gregory A. Worrell 1,5 1 梅奥诊所神经内科生物电子神经生理学和工程实验室,明尼苏达州罗切斯特 55905 2 捷克信息学、机器人学和控制论研究所,捷克技术大学,16000 布拉格,捷克共和国,3 捷克技术大学生物医学工程学院,16000 布拉格,捷克共和国,4 布尔诺理工大学电气工程与通信学院生物医学工程系,61600 布尔诺,捷克共和国。 5 梅奥诊所生理学和生物医学工程系,明尼苏达州罗切斯特 55905,6 梅奥诊所睡眠医学中心、神经病学和医学系、睡眠神经病学和肺部和重症监护医学分部,明尼苏达州罗切斯特 55905 7 精神病学和心理学系 8 梅奥诊所放射学系,明尼苏达州罗切斯特 55905 9 梅奥诊所神经外科系,明尼苏达州罗切斯特 55905 10 牛津大学医学研究委员会脑网络动力学部工程科学系,牛津 OX3 7DQ,英国 摘要 颞叶癫痫是一种常见的神经系统疾病,以反复发作为特征。这些癫痫发作通常源于边缘网络,患者还会出现与记忆、情绪和睡眠 (MMS) 相关的慢性合并症。针对丘脑前核的深部脑刺激 (ANT-DBS) 是一种行之有效的治疗方法,但最佳刺激参数仍不清楚。我们开发了一个用于跟踪癫痫发作和 MMS 的神经技术平台,以实现研究性脑传感刺激植入物、移动设备和云环境之间的数据流。人工智能算法提供了癫痫发作、发作间期癫痫样尖峰和清醒-睡眠脑状态的准确目录。远程管理的记忆和情绪评估用于在 ANT-DBS 期间密集采样认知和行为反应。我们评估了低频和高频 ANT-DBS 的疗效。它们都减少了癫痫发作,但低频 ANT-DBS 显示出更大的减少以及更好的睡眠和记忆。这些结果凸显了同步脑传感和行为跟踪在优化神经调节疗法方面的潜力。
在运动康复领域,脑部计算机界面神经反馈训练(BCI-NFT)是一种有前途的策略。这旨在利用个人的大脑活动来刺激或协助运动,从而增强感觉运动途径并促进运动恢复。采用各种方法学,BCI-NFT已被证明可有效增强中风上肢的运动功能,而在脑瘫(CP)中很少有研究报告。我们的主要目标是开发脑电图(EEG)的BCI-NFT系统,采用关联学习范式,以改善对CP和可能其他神经系统种群中踝背屈的选择性控制。首先,在八名健康志愿者组成的队列中,我们成功地实施了一个BCI-NFT系统,基于对运动相关的缓慢运动相关皮层电位(MRCP)的检测,而EEG试图同时激活Neuromuscular刺激,从而帮助感官反馈对Sensory Reppordex cornexex,从而激活神经肌肉电刺激。参与者还查看了计算机显示,该显示器提供了踝关节运动范围的实时视觉反馈,并显示了一个个性化的目标区域,以鼓励最大程度的努力。评估了几种潜在策略后,我们采用了长期的短期记忆(LSTM)神经网络,一种深度学习算法,在运动开始前检测电动机意图。然后,我们通过CP儿童的10条踝背屈训练方案评估了系统。通过在会议上采用转移学习,我们可以显着将校准试验的数量从50减少到20,而不会损害检测准确性,平均为80.8%。参与者能够完成所需的校准试验和所有10次课程的每次课程100次培训试验,训练后表明踝关节背屈速度,步行速度和步长的长度增加。基于CP儿童的出色系统性能,可行性和初步效果,我们现在正在较大的CP儿童中进行临床试验。
材料和方法:我们创新的 BCI-AO 干预措施解码了用户在完成任务时的专注观察。此过程涉及提供奖励性视觉提示,同时通过 PES 激活传入通路。分析包括 15 名中风患者。所有患者在四种不同的实验条件下接受 15 分钟的 BCI-AO 程序:无 PES 的 BCI-AO、有连续 PES 的 BCI-AO、有触发 PES 的 BCI-AO 和有反向 PES 应用的 BCI-AO。PES 以相当于感觉阈值 120% 的强度和 50 Hz 的频率应用于腕部尺神经。实验随机进行,间隔至少 3 天。为了评估皮质脊髓和周围神经的兴奋性,我们比较了四种条件下患手肌肉的运动诱发电位和 F 波在任务前后(0 后、20 分钟后)的参数。