•保持通道的流量1-3打开,并在〜2.5μm和6μm之间移动陷阱1,以确定是否形成了系绳,通过观察力响应。对于单个系绳,测得的FD曲线遵循双链DNA的蠕虫样链模型,轮廓Lenght为17.853 bp,并且在60 Pn处具有过度拉伸的高原。双重系数显示,距离较短的力响方面的发作将使高原过高的高原。双 - 毛线可以通过增加珠子之间的距离而打破,但是,也可能发生Tethers(部分)转换为杂种,而不是导致单个常规的Tethers。如果经常捕获多个系数,则可以降低注射器中的DNA浓度。
工程大肠杆菌菌株用于生产长的单链DNA Konlin Shen 1,Jake J.洪水2,Zhuizi Zhang 1,Alvin HA 4,5,6,Brian R. Shy 4,5,6,John E.美国加利福尼亚州伯克利的国家实验室4美国加利福尼亚大学旧金山分校,美国加利福尼亚州旧金山的实验室医学系。5 Gladstone-UCSF基因组免疫学研究所,美国加利福尼亚州旧金山。6加利福尼亚大学旧金山分校的医学系,美国加利福尼亚州旧金山。 对应证:shawn.douglas@ucsf.edu抽象的长单链DNA(SSDNA)是一种多功能分子试剂,其应用包括RNA引导的基因组工程和DNA纳米技术,但其生产通常是资源密集的。 我们采用了一种新的方法,利用工程化的大肠杆菌“助手”菌株和吞噬系统,将长ssDNA的产生简化为直接转化和纯化程序。 我们的方法通过将M13MP18基因直接整合到大肠杆菌染色体中,从而消除了对辅助质粒及其相关污染的需求。 ,我们实现了504至20,724个核苷酸的ssDNA长度,碱性赖氨酸溶液纯化后滴度最高为250 µg/l。 通过将其在原代T细胞基因组修饰和DNA折纸折叠中的应用中,我们的系统的功效得到了证实。6加利福尼亚大学旧金山分校的医学系,美国加利福尼亚州旧金山。对应证:shawn.douglas@ucsf.edu抽象的长单链DNA(SSDNA)是一种多功能分子试剂,其应用包括RNA引导的基因组工程和DNA纳米技术,但其生产通常是资源密集的。我们采用了一种新的方法,利用工程化的大肠杆菌“助手”菌株和吞噬系统,将长ssDNA的产生简化为直接转化和纯化程序。我们的方法通过将M13MP18基因直接整合到大肠杆菌染色体中,从而消除了对辅助质粒及其相关污染的需求。,我们实现了504至20,724个核苷酸的ssDNA长度,碱性赖氨酸溶液纯化后滴度最高为250 µg/l。通过将其在原代T细胞基因组修饰和DNA折纸折叠中的应用中,我们的系统的功效得到了证实。我们的方法的可靠性,可伸缩性和易度性有望解锁需要大量长ssDNA的新实验应用。引言单链DNA(ssDNA)在生物技术中起着至关重要的作用,尤其是在DNA纳米技术和基因编辑1,2中。长ssDNA的合成超过5000个核苷酸(NT)是具有挑战性的,并且明显的障碍可以阻止可扩展产生。通过磷酰胺化学的直接化学合成仅限于由于掺入误差和脱尿3的长度300-400 nt。为了获得更长的ssDNA链,电流实践采用双链DNA(dsDNA)作为模板。例如,不对称PCR可以在长度4中产生高达15,000 nt的ssDNA。其他方法包括使用差异修饰的引物进行PCR扩增:用于lambda外核酶消化5的磷酸化和未磷酸化,或生物素基化和非生物素化和非生物素化,用于链霉亲和素珠分离6-在孤立的Ssdna strands隔离时进行抗性。然而,这些技术通常每50-微晶(µL)反应产生小于1微克(µg)的ssDNA,从而使毫克的生产量成本昂贵,并且由于广泛的劳动力和高度试剂的消耗而效率低下,因此强调了更多可扩展和经济的SSDNA生产方法的必要性。
复制蛋白A(RPA)是单个链DNA(ssDNA)结合蛋白,可协调各种DNA代谢过程,包括DNA复制,修复和重组。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。 灵活性使RPA能够采用多种配置,并被认为可以调节其功能。 在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。 在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。 我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。 我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。 有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。 最后,我们表征了RPA拥挤对RPA迁移的影响。 这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。灵活性使RPA能够采用多种配置,并被认为可以调节其功能。在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。最后,我们表征了RPA拥挤对RPA迁移的影响。这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。
双链DNA抗体(IgG)一般信息,自身抗体与双链DNA的存在强烈暗示SLE,尽管仅在40-60%的患有该疾病的患者中发现它们。Specimen transport: At room temperature Repeat frequency: We recommend not repeating this test more than once a month, unless the patient is undergoing plasmapheresis Special precautions: None Laboratory information Normal reference range: 0-9.9 IU/mL Volume and sample type: 4ml serum Method: Multiplex flow immunoassay and Immunofluorescence Participation in EQA Scheme: Nuclear and Related Antigens Turnaround time (calendar days from sample receipt to authorised结果):中位-2个测试的临床信息指示:诊断和监测影响测试的狼疮因素:我们使用两种测定法检测DNA抗体:
参考文献1。Hahn BH。 抗DNA的抗体。 n Engl J Med。 1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Hahn BH。抗DNA的抗体。n Engl J Med。1998; 338:1359-1368。 2。 tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。 1982年修订的全身性红斑狼疮分类的标准。 节炎。 1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1998; 338:1359-1368。2。tan em,Cohen AS,Fries JF,Masi AT,McShane DJ,Rothfield NF等。1982年修订的全身性红斑狼疮分类的标准。节炎。1982; 25:1271-1277。 3。 Egner W.在SLE的诊断中使用实验室测试。 J Clin Pathol。 2000; 53:424-432。 4。 Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。 J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 25:1271-1277。3。Egner W.在SLE的诊断中使用实验室测试。J Clin Pathol。2000; 53:424-432。4。Smeenk R,van der LG,Aarden L.抗体对DSDNA的亲和力:在Crithidia luciliae,Farr Assay和Peg Assay上进行IFT的比较。J immunol。 1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。J immunol。1982; 128:73-78。 5。 Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。 抗DSDNA:与临床价值相关的测定方法。 风湿性int。 1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1982; 128:73-78。5。Smeenk RJ,Van Den Brink HG,Brinkman K,Termaat RM,Berden JH,Swaak AJ。抗DSDNA:与临床价值相关的测定方法。风湿性int。1991; 11:101-107。 6。 Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。 Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1991; 11:101-107。6。Swaak T,SmeenkR。抗DSDNA作为诊断工具的检测:对441个非系统性红斑狼疮抗DSDNA抗体(抗DSDNA)的前瞻性研究。Ann Rheum Dis。 1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Ann Rheum Dis。1985; 44:245-251。 7。 Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。1985; 44:245-251。7。Peng SL,Craft Je。 抗核抗体。 in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。 Elsevier:2017; 817-830。 8。 Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。 临床和实验性风湿病学。 2015; 33(2):217-224。Peng SL,Craft Je。抗核抗体。in:凯利(Kelley)和弗雷斯坦(Firestein)的风湿病教科书(第十版); Firestein GS,Budd RC,Gabriel SE,McInnes IB,O'Dell Jr,编辑。Elsevier:2017; 817-830。8。Sebastiani GD,Morozzi G,Bellisai F,Bistoni O,MoscaM。检测抗DSDNA抗体的不同方法的比较:多中心分析。临床和实验性风湿病学。2015; 33(2):217-224。2015; 33(2):217-224。9。Damoiseaux JG,Tervaert JWC,Froment Dr,Van Venrooij WJ,Hillen HFP。抗双链DNA(DSDNA)抗体的诊断值与结缔组织疾病中其他实验室参数有关。风湿性疾病的年鉴。2002; 61(5):474-476。 10。 Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。 j风湿病。 2006年9月; 33(9):1785-1788。2002; 61(5):474-476。10。Neogi T,Gladman DD,Ibanez D,Urowitz M. Farr和Elisa Techniques进行的抗DSDNA抗体测试是不相等的。j风湿病。2006年9月; 33(9):1785-1788。
图2。corex基因(a,b)验证验证核心基因预测值的验证。精度表示真正是eCDNA(+)的预测样品的比例。召回是指正确预测的eCDNA(+)样品的比例。对于具有相似精度的多个点,绘制了最大召回率。(a)核心基因和核心基因的曲线重叠,表明相似的预测能力。(b)Corex基因具有较高的预测率,并且基于对数折叠的折叠变化(TOP-| LFC |基因)的643个差异表达基因。(c)Corex基因在肿瘤类型的ECDNA(+)样品中始终在肿瘤样品中持续上调,但SARC除外。(d)的643 top- | lfc |基因,240个上调,而403个在ECDNA(+)样品中下调。325上调,而318个下调。top- | lfc |的绝对LFC值基因集明显大于核心基因的基因(p值1.83E -158)。(e)Corex基因的归一化基因表达值显着高于Top-| LFC |的基因表达值。基因集(p -Value <2E -308)。*** p -Value <0.001。
TN5转座子标记双链DNA和RNA/DNA杂交产生的核酸,这些核酸准备被放大以进行高通量测序。必须探索TN5转座子的核酸底物以增加TN5的应用。在这里,我们发现TN5转座子可以将寡核酸转置超过140个核苷酸的单链DNA的5'端。基于TN5的此属性,我们开发了一种基于标记和启用连接的单链DNA测序方法,称为Table-Seq。通过一系列反应温度,时间和酶浓度测试,我们将表格seq应用于链特异性的RNA测序,从总RNA的30 pg开始。此外,与传统的基于DUTP特异性的RNA测序相比,该方法检测到更多的基因,具有较高的链特异性,并且在基因之间显示出更均匀分布的读数。一起,我们的结果提供了有关TN5转座子特性的见解,并扩展了TN5在尖端测序技术中的应用。
非编码重复膨胀会导致几种神经退行性疾病,例如脆弱的X综合征,肌萎缩性侧面硬化症/额颞痴呆和脊椎没收(SCA31)。必须研究这种重复的序列,以了解疾病机制并使用新颖的方法来防止它们。然而,合成寡核苷酸的合成重复序列由于不稳定,缺乏独特的序列而表现出二级结构的倾向。综合重复序列通常很难。在这里,我们采用了滚动圆扩增技术,使用微小的合成单链圆形DNA作为模板获得无缝的长重复序列。我们获得了2.5 - 3 KBP不间断的TGGAA重复序列,在SCA31中观察到,并使用限制消化,Sanger和Nanobore测序对其进行了确认。这种无细胞的体外克隆方法可能适用于其他重复膨胀疾病,并用于产生动物和细胞培养模型,以研究体内和体外的重复扩张疾病。
双链DNA(DsDNA)分子在氧化石墨烯(GO)表面上的吸附动力学非常重要,对于在生物传感器,生物医学和材料科学中的DNA/GO功能结构的应用至关重要。在这项工作中,分子动力学模拟用于检查GO表面上不同长度DsDNA分子(从4 bp到24 bp)的吸附。dsDNA分子可以通过末端底部吸附在GO表面并站立在GO表面上。对于短dsDNA(4 bp)分子,双螺旋结构被部分或完全损坏,吸附动力学受到短dsDNA的结构漏气的影响,并且在GO表面上氧化基团的分布。对于长dsDNA分子(从8 bp到24 bp)的吸附是稳定的。通过非线性插入DsDNA分子和GO表面之间的接触角,我们发现,如果DSDNA分子的长度长于54 bp,则吸附在GO表面上的DSDNA分子可以平行于GO表面。我们将这种行为归因于dsDNA分子的灵活性。随着长度的增加,dsDNA分子的灵活性也会增加,并且这种增加的功能使吸附的dsDNA分子更有机会使用自由末端来达到GO表面。这项工作提供了DSDNA分子在GO表面上吸附的全部图片,对于DNA/GO基生物传感器的设计应该有益。
