5 哈勃太空望远镜系统 5-1 5.1 支持系统模块 5-2 5.1.1 结构和机制子系统 5-2 5.1.2 仪器和通信子系统 5-7 5.1.3 数据管理子系统 5-8 5.1.4 指向控制子系统 5-10 5.1.5 电力子系统 5-14 5.1.6 热控制 5-16 5.1.7 安全(应急)系统 5-16 5.2 光学望远镜组件 5-18 5.2.1 主镜组件和球面像差 5-19 5.2.2 次镜组件 5-23 5.2.3 焦平面结构组件 5-24 5.2.4 OTA 设备部分 5-24 5.3 精细制导传感器 5-25 5.3.1 精细制导传感器组成和功能 5-25 5.3.2 铰接镜系统 5-27 5.4 太阳能电池阵列和抖动问题 5-27 5.4.1 配置 5-27 5.4.2 太阳能电池阵列子系统 5-28 5.4.3 维修任务 3A 的太阳能电池阵列配置 5-29 5.5 科学仪器控制和数据处理单元 5-29 5.5.1 组件 5-29 5.5.2 操作 5-30 5.6 空间支持设备 5-31 5.6.1 飞行支持系统 5-32 5.6.2 轨道替换单元运载器 5-33 5.6.3 机组辅助设备 5-35
2023 年,我们提出了这样的想法:对于某些子系统,使用 AI/ML 技术可以大大加速逆向工程任务的建模部分。与传统的建模和仿真技术相比,AI/ML 方法具有一个关键优势:传统的 M&S 开发人员需要成为子系统主题领域的专家,并且通常主要从定制开发的代码中生成模型,而 AI/ML 建模者则主要将子系统视为一个黑匣子,它只接收输入数据并产生输出数据,这个过程可以使用大多数现有的现成 AI/ML 工具箱进行建模。在最纯粹的形式中,AI/ML 模型只有一个目的:非常忠实地从输入中重现输出,而无需“了解”子系统内部的工作方式或数据代表什么。当然,子系统专家可以深入了解哪些行为最重要,哪些输入最能代表关键
说明:清晰打印或打印。威斯康星州卫生服务部(DHS)要求提供者向DHS发送操作计划,作为威斯康星州医疗补助的入学和重新验证的一部分。操作计划描述了托儿协调(CCC)提供商以家庭为中心且在文化上适当的方式进行全部CCC福利和所有CCC活动的能力。CCC提供商的操作计划必须是CCC提供商保留的可访问记录的一部分。提供商可以在forwardHealth在线手册的CCC服务区域中找到有关这些要求的更多信息,请访问effordHealth.wi.gov/wiportal/subsystem/kw/display.aspx?ia=1&p=1&sa=7。
4控制策略77 4.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。77 4.1.1模型简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。78 4.2超级隔离器子类型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 4.2.1超级隔离器模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。80 4.2.2非最低相位问题。。。。。。。。。。。。。。。。。。。。。。。。80 4.2.3控制诱导的时间尺度分离。。。。。。。。。。。。。。。。。。。。82 4.2.4超级电容器控制应用程序。。。。。。。。。。。。。。。。。。。。。。86 4.2.5零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。87 4.2.6参考计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。89 4.3电池子系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。91 4.3.1电池模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。92 4.3.2反馈线性化。。。。。。。。。。。。。。。。。。。。。。。。。。。。93 4.3.3零动力学分析。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 94 4.4 PV数组子系统。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95 4.4.1 PV数组模型。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 96 4.4.2反馈线性化。 。 。 。 。 。93 4.3.3零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。94 4.4 PV数组子系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。95 4.4.1 PV数组模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。96 4.4.2反馈线性化。。。。。。。。。。。。。。。。。。。。。。。。。。。。96 4.4.3零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。97 4.5 DC负载子系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。98 4.5.1 DC负载模型。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。98 4.5.1 DC负载模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。98 4.5.2反向替代控制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。99 4.5.3零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。101 4.6再生制动子系统。。。。。。。。。。。。。。。。。。。。。。。。。。。102 4.6.1再生制动模型。。。。。。。。。。。。。。。。。。。。。。。。。。103 4.6.2再生制动控制应用。。。。。。。。。。。。。。。。。104 4.6.3零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。105 4.6.4参考计算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。106 4.7 AC网格连接。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 107 4.7.1 AC网格模型。106 4.7 AC网格连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。107 4.7.1 AC网格模型。107 4.7.1 AC网格模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。107 4.7.2反馈线性化。。。。。。。。。。。。。。。。。。。。。。。。。。。。109 4.7.3零动力学分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。109 4.7.4 PLL同步。。。。。。。。。。。。。。。。。。。。。。。。。。。。。110 4.8系统互连。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。111 4.8.1直流总线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。111 4.8.2分层控制结构。。。。。。。。。。。。。。。。。。。。。。。。112 4.8.3预序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。113 4.8.4稳定性分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。113
- Identify and characterize the major hardware subsystems of a robotic spacecraft mission - Understand the basic physical principles of the most common spaceborne remote sensing instruments - Understand and implement general spacecraft telemetry, command and data handling concepts on representative satellite hardware systems - Know how to test and evaluate the performance of a representative spacecraft subsystem component (power, attitude control, positioning, etc.)- 了解基本航天器通信的基本原理和物流 - 安全地与电气硬件和测试设备一起使用 - 通过低级软件协议(UART,I2C,SPI)与硬件组件进行互动 - 有效地以口头和书面形式在团队环境
这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
摘要。自我适应是自主系统的关键特征,必须应对其环境和内部状态中的不确定性。自适应系统通常被建模为具有托管子系统的两层系统,可处理域关注和实施适应性逻辑的管理子系统。我们考虑了自适应机器人系统的案例研究;更具体地说,一种用于管道检查的水下水下车辆(AUV)。在本文中,我们使用功能吸引的概率模型检查器Profeat对其进行建模和分析。AUV的功能是在功能模型中建模的,从而捕获了AUV的可变性。这使我们能够将AUV的托管子系统建模为一个系统家族,每个家庭成员都对应于AUV的有效功能配置。AUV的管理子系统被建模为在此类有效的特征配置之间动态切换的控制层,这取决于环境和内部条件。我们使用此模型来分析AUV的概率奖励和安全性。
自我适应是自主系统的关键特征,必须应对其环境和内部状态中的不确定性。自适应系统(SASS)可以实现为两层系统,引入了系统(托管子系统)和适应性逻辑(管理子系统)之间的域特定功能之间的关注点,即引入系统中管理适应性的外部反馈循环。我们提出了一种将SASS作为动态软件产品线(SPL)的方法,并利用现有的方法来基于SPL的分析来分析SASS。这样做,SA的功能是在功能模型中建模的,从而捕获了SAS的可变性。这使我们能够将SAS的托管子系统建模为一个系统家族,每个家庭成员都对应于SAS的有效功能配置。因此,SAS的托管子系统被建模为SPL模型。更确切地说,概率为特色过渡系统。SAS的管理子系统被建模为一个控制层,能够在这些有效配置之间动态切换,具体取决于环境和内部条件。我们证明了对用于管道检查的自适应自动水下车辆进行小规模评估的方法,我们将其对其进行建模和分析,并通过特征吸引的概率模型检查器Profeat。该方法使我们能够分析SAS的概率奖励和安全性,以及其适应性逻辑的正确性。
5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GBAS 架构 ................................................................................................................ 47 5.3.1. 地面子系统 .............................................................................................................. 47 5.3.1.1. 接收单元 .............................................................................................................. 48 5.3.1.2. 处理单元 .............................................................................................................. 49 5.3.1.3. 传输单元 ............................................................................................................. 49 5.3.2. 飞行器子系统 ............................................................................................................. 50 5.4. GBAS 完整性与性能 ............................................................................................................. 51 5.4.1. 完整性分配
N00024-19-0415 N00024 - NAVSEA HQ N00024 - NAVSEA HQ 子系统间监控工具船上团队训练器主控制器 (ISMT OBTT MC) FY22;子系统间监控工具船上团队训练器主控制器 (ISMT OBTT MC) PEO 潜艇 (SUB) PMS 425 5000 万美元至 1 亿美元 2021 年第二季度 2022 年第一季度