该法规要求气体绝缘开关设备 (GIS) 的所有者每年报告以下信息:SF 6 排放量、使用 SF 6 作为绝缘气体的 GIE 清单、与存储 SF 6 气体的容器相关的信息以及 SF 6 进出 GIE 的情况。该法规还要求随着时间的推移减少 GIE 的 SF 6 排放量,并设定每个 GIE 所有者不得超过的年度排放率限制。最大允许排放率从 2011 年开始为 10%,此后每年下降 1%。如果没有对法规的拟议修改,到 2020 年,该限制将达到 1%,并将保持在该水平。根据法规报告的数据显示,全州 SF 6 容量每年增长 1% 至 5%,GIE 所有者提供的预测表明这种趋势将持续到未来。因为根据现行法规,排放限制将保持相当于年容量的 1%,所以随着容量的增长,预期排放量也会增加。
Element 16 Technologies, Inc.(Element 16)成功开发并展示了一种新型长时储能技术,该技术使用单罐配置的硫磺来经济高效地储存和调度可再生能源电力。核心创新是利用石油和天然气工业中丰富的废副产品硫磺,大幅降低 Element 16 热能储存的成本。该团队建造并测试了一个中试规模的 1.5 兆瓦时硫磺热电池装置,该装置集成了一个电加热器,旨在利用可再生能源发电产生的可变多余电力进行充电。储存的热量通过小型低温发电装置转化为电能,该装置也可直接用于工业过程热脱碳。
5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。
室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
摘要 锂硫电池因其突出的理论能量密度而被视为未来储能系统的有希望的候选材料。然而,它们的应用仍然受到几个关键问题的阻碍,例如硫物质的低电导率、可溶性多硫化锂的穿梭效应、体积膨胀、缓慢的氧化还原动力学以及不可控的锂枝晶形成。人们投入了大量的研究精力来突破阻碍锂硫电池实现实际应用的障碍。最近,由于不含添加剂/粘合剂、体积变化的缓冲、高硫负载和锂枝晶的抑制,纳米阵列 (NA) 结构已成为锂硫电池中高效耐用的电极。在本文中,回顾了 NA 结构在锂硫电池中的设计、合成和应用的最新进展。首先,概述了 NA 结构电极在锂硫电池中的多功能优点和典型的合成策略。其次,NA 结构的应用
溶于电解质中的高活动嘴唇与Li金属阳极化学反应。 [9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。 [10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。 [11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。 [12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。 已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。 [13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。 [14]溶于电解质中的高活动嘴唇与Li金属阳极化学反应。[9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。[10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。[11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。[12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。[13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。[14]
作者的完整列表:Rafie,Ayda; Drexel大学,化学与生物学工程Pai,Rahul; Drexel大学工程学院,化学与生物工程学院Kalra,Vibha; Drexel大学,化学和生物学工程
February 20, 2024 Brooke Baker Manager of Regulations OR-CAL, Inc. 29454 Meadowview Road Junction City, OR 97488 Subject: Notification per PRN 98-10 – Addition of 4 gallon package size Product Name: REX LIME SULFUR SOLUTION EPA Registration Number: 71096-6 Application Date: January 18, 2024 Case Number: 497128 Dear Brooke Baker: The Agency is in根据上述参考产品收到根据农药注册通知(PRN)98-10收到农药通知的申请。注册部(RD)已根据PRN 98-10对其适用性进行了审查,并发现所请求的诉讼属于PRN 98-10的范围。随附该应用程序提交的标签已被盖章“通知”并放置在我们的记录中。如果您希望在您的标签上添加/保留对公司网站的参考,请注意,该网站在联邦杀虫剂,杀菌剂和Rodenticide Act(FIFRA)下贴上标签,并由该机构进行审查。如果网站是错误的或误导性的,则根据FIFRA第12(a)(1)(e)条出售或分发产品将是错误的,并且非法出售或分发。40 CFR 156.10(a)(5)列出了语句示例EPA可能会考虑错误或误导性。此外,无论您是否在您的产品标签上引用网站,网站上的索赔都可能与通过注册过程批准的那些索赔有根本差异。因此,如果该机构发现网站包含虚假或误导性的陈述或索赔与EPA批准的注册有很大不同的索赔,则该网站将被转介给EPA的执法和合规办公室。
多硫化锂 (LiPSs) 的穿梭效应是阻碍锂硫电池发展的关键障碍之一。在此,我们提出了一种多孔 Mo 2 C-Mo 3 N 2 异质结构/rGO 主体,Mo 2 C-Mo 3 N 2 异质结构结合了 Mo 2 C 的高吸附性和 Mo 3 N 2 的高催化性的优点,从而实现了 LiPSs 在 Mo 2 C-Mo 3 N 2 异质界面上的快速锚定-扩散-转化。Mo 2 C-Mo 3 N 2 异质界面提高了 LiPSs 的捕获效率和向 Li 2 S 的转化率。rGO 为电子传输提供了快速路径,并充当了保护层,防止结构在循环过程中受损。密度泛函理论 (DFT) 计算表明,Mo 2 C 对 Li 2 S 4 的吸附能力比 Mo 3 N 2 强,Mo 3 N 2 具有更好的反应动力学特性。实验中,Mo 2 C-Mo 3 N 2 /rGO@S 电极表现出优异的倍率性能。在高硫负载量(3.4 和 5.0 mg cm − 2 )下,300 次循环后容量保持率为 78%,在 0.5C 下为 70%。Mo 2 C-Mo 3 N 2 /rGO 硫电极表现出 4.56 × 10 -7 cm 2 s − 1 的高 Li + 扩散系数,这得益于界面处 LiPSs 的加速转化。我们的研究结果揭示了 LiPSs 的锚定-扩散-转化在抑制穿梭效应方面的关键作用。
使用X射线光电光谱(XPS)在银色和铜表面上的自组装1多二烷硫醇单层(SAM)使用同步辐射和常规MG K激发表征。辐照诱导的Cu和Ag上硫醇酸盐SAM的变化。已经完成了硫种类的识别。结果获得了对银的N-烷硫醇的早期研究。在铜(C 12 s/cu)上,观察到的S 2P频谱非常广泛,但是使用不同的激发能的使用使我们能够识别表面上的四个硫种。在162.6 eV处观察到硫酸铜的S 2P 3/2成分。在辐照过程中已经观察到了另外三个双重(161.9 eV,163.2 eV和163.8 eV),并将它们分配给铜上的化学吸附硫,不同的二二甲基硫纤维和硫 - 硫键。©2004 Elsevier B.V.保留所有权利。