从经济,技术和环境的角度来看,从煤炭资源中清除硫,近年来受到了越来越多的关注。目前的工作研究了化学(Meyers和Molten腐蚀性浸出(MCL))和生物学方法的能力。在90°C的90分钟内,在硫酸铁浓度为1 m的过程中,在90°C,61.78%的灰分和82%的黄铁矿和51.35%的总硫从TABAS煤中分别去除。还研究了MCL方法。因此,基于苛性钠 /煤比的MCL实验条件2,浸出时间为60分钟,恒温为180°C,71.82%的灰分,88%的黄铁矿硫和57.85%的总硫含量中的57.85%分别从TAPAS煤中清除。此外,使用嗜酸铁和氧化氧化的中性细菌的混合培养塔巴斯煤的生物硫化。研究了时间,细菌培养基,固体/液体(S/L)的影响,并研究了细菌的缺失,并根据结果,时间是最重要的参数。因此,在20天内,从塔巴斯煤中除去了灰硫的68.98%,黄铁矿硫的92%和72.43%的总硫。
电动汽车建议的正极化学成分 1)高镍正极 NMC/NCA 2)LFP 3)LiMn XO 2:高电压 4)硫:锂硫电池 5)氧气:空气电池-与燃料电池概念相同 6)其他金属氧化物/硫化物合成材料 7)复合转化化合物:有机化合物
通过对预碳化间苯二酚-甲醛球进行化学活化,合成了具有高度堆积六边形排列的多孔碳微球和 S/微球碳复合材料。硫代硫酸钠用作无害的活化剂、S 掺杂剂和硫前体。多孔微球具有较大的表面积(2060-2340 m 2 g -1 )和足够的微中孔率。它们还具有大量的硫杂原子(5-7 %)和高电子电导率(2.3-3.1 S cm -1 )。微球的紧密组织和适当的孔隙率使其在水性和有机电解质中工作的超级电容器中使用时能够实现具有竞争力的体积电容值(分别为 130 和 64 F cm -3 ),同时保持良好的倍率性能。此外,硫含量超过80%的硫/球形碳复合材料被测试用作锂硫电池正极材料,显示出高的硫利用率、大的体积容量值(768mAh cm -3 )和稳定的长期循环性能(每次循环的容量损失为0.086%)。
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
2015年,Drozdov及其同事报告了硫化硫化物中的高温超导性[1]。通常认为结果是真实的[2-7]。依赖,黄和同事测量了硫磺氢的AC磁敏感性[8],并且在外观上确定了超导性的存在。根据参考。[9],这项工作“为高压下超导性实验研究设定了新标准”。然而,我们最近认为,参考文献中提出的硫磺中支持超导性的实验证据。[1]并不令人信服[10],而参考文献中都没有提出。[11,12]关于Meissner效应[13,14]。在本文中,我们认为参考文献的AC敏感性测量值。[8]也没有支持硫化硫化物中超导性的支持。到目前为止,尚无其他对AC磁敏感性的研究或硫氢的其他磁性性能。AC磁化率是高压下材料超级电导率的优越测试[15-20]。超导体排除了磁通量,因此在冷却到超导状态后会观察到AC磁敏感性的急剧下降。因此,习惯是根据关系进行高压的实验,因为钻石砧细胞的几何形状所需的样本较小,检测到的信号是由于样品的叠加和背景磁反应的叠加而产生的很大的信号,背景信号的数量高于样品信号的几个阶数[15,16,18,18,20]。
随着新技术的快速开发,具有更好的电化学特性的储能设备的请求也正在增加。因此,必须进行更新颖,有效的能源储能组件的搜索和开发。在哈萨克斯坦,有几个小组在储能设备领域进行研究。 其中一个是曼苏罗夫教授的研究小组,我们有很长时间的富有成果的合作。 Group at Nazarbayev University do research in design and investigation of advanced energy storage materials for high performance energy storage devices, including lithium-ion batteries, sodium-ion batteries, lithium- sulfur batteries, and aqueous rechargeable batteries, employing strategies as nanostructuring, nano/micro combination, hybridization, pore-structure control, configuration design, 3D printing, surface modification, and组成优化。 本手稿审查了纳扎尔巴耶夫大学科学家提供的有关高级电池材料的研究。在哈萨克斯坦,有几个小组在储能设备领域进行研究。其中一个是曼苏罗夫教授的研究小组,我们有很长时间的富有成果的合作。Group at Nazarbayev University do research in design and investigation of advanced energy storage materials for high performance energy storage devices, including lithium-ion batteries, sodium-ion batteries, lithium- sulfur batteries, and aqueous rechargeable batteries, employing strategies as nanostructuring, nano/micro combination, hybridization, pore-structure control, configuration design, 3D printing, surface modification, and组成优化。本手稿审查了纳扎尔巴耶夫大学科学家提供的有关高级电池材料的研究。
容器式 NAS ® 电池由六个模块组成,每个模块有 192 个电池。NAS ® 电池单元由钠作为负极,硫作为正极组成。β-氧化铝陶瓷管用作电解质,只允许钠离子通过。放电时,钠被氧化,硫被还原形成多硫化物 (Na 2 SX)。充电步骤再次回收金属钠和元素硫。
全球能源需求的不断增长以及化石燃料消耗引起的气候变化要求实施可再生能源技术。然而,风能和太阳能发电的间歇性要求可靠的能量储存。虽然二次电池由于其模块化和便携性而成为颇具吸引力的储能设备,但目前的电池技术,如锂离子电池 (LIB),尚未达到广泛采用所需的能量密度和低成本。在迄今为止研究的各种电池化学中,锂硫 (Li-S) 电池作为 LIB 的有前途的替代品脱颖而出。锂硫电池可以实现 2,572 Wh kg -1 的高理论重量能量密度,几乎比目前的 LIB 高一个数量级。硫的储量丰富且成本低廉也使 Li-S 电池比现有的钴基 LIB 更实惠、更环保。然而,由于一种众所周知的“穿梭效应”现象,Li-S 电池的循环性较差。 1–4 在放电过程中,正极经历多电子转化过程,其中元素硫被还原为可溶性 Li 2 S x (x = 4-8),然后终止于不溶性 Li 2 S。生成的可溶性多硫化物 (PS) 可以从正极浸出到电解质中,导致活性材料损失和电极表面钝化。这种穿梭效应导致容量衰减迅速、自放电率高和电池阻抗高。缓解多硫化物浸出的一种解决方案是在正极采用硫宿主材料。为了实现最佳的活性材料利用率和循环性能,应考虑硫宿主的极性、孔隙率和电导率,因为这些特性与其能力密切相关