摘要 - 用于优化问题的元数据包括粒子群优化(PSO)技术。他们从表现出集体行为的鱼类和鸟类的协调运动中获取线索。人工神经网络(ANN)需要一个复杂的学习阶段,例如后传播,被认为是人工智能的来源(AI)。此阶段允许计算每个神经元的误差梯度,从最后一层到第一个。但是,目标函数的某些特质是必需的(成本)。这促使我们尝试使用元映射学,以简化ANN的训练,以管理复杂的非线系统。这项研究的目的是应用深度加固学习(DRL)自动计算PSO算法的参数,同时还优化了ANN的监督学习过程。经过许多案例研究,我们的方法始终导致理想ANN的系数。
摘要:机器学习领域的快速发展也带来了一些生存挑战,这些挑战本质上都与“信任”这一广义概念有关。这一广义概念的各个方面包括对任何机器学习过程输出的信任(以及防止黑匣子、幻觉等)。对科学的信任正受到威胁,尤其是现在法学硕士可以产生“好看的废话”,论文工厂的出现是为了应对当前研究环境中不正当的奖励制度。同一枚硬币的另一面是,如果机器学习得不到适当的控制,它也会突破安全和隐私障碍,违反 GDPR 以及其他道德、法律和社会障碍,包括公平性。此外,数据“某处”的存在绝不意味着其实际可重用性。这包括现已确立的 FAIR 原则的四个要素:许多数据即使找到也无法找到,在明确定义的条件下也无法访问,如果访问则无法互操作(第三方和机器无法理解),这导致绝大多数数据和信息无法重复使用,除非违反版权、隐私法规或隐含或明确支撑查询或深度学习算法的基本概念模型。现在,越来越多的数据也将被机器“独立”使用,所有这些挑战都将严重加剧。本次主题演讲将讨论“数据访问”相对于传统的“数据共享”(包含数据下载、传输和失去控制的内涵)如何减轻大多数(如果不是全部)传统“数据共享”的不良副作用。对于联合数据访问,数据应该从另一个意义上或角度来看是公平的,它们应该是“联合的、AI-Ready”的,以便访问算法可以回答与访问控制、同意、格式相关的问题,并且可以读取有关数据本身的丰富(公平)元数据,以确定它们是否“适合用途”和机器可操作(即公平数字对象或机器可操作单元)。“适合用途”的概念远远超出了(但包括)有关方法、质量、误差线等的信息。访问算法的所有操作的“不可变日志记录”至关重要,尤其是在使用“群体学习”中的自学习算法时。足以让我们忙上一阵子了。https://www.nature.com/articles/s41586-021-03583-3
群体智能 (SI) 是一种基于分散、自组织系统的集体学习和决策形式。利用 SI 医疗保健可以解决互联医疗保健组织内部攻击的传播问题,并确保基于安全性和弹性的医疗保健生态系统的完整性。在医疗保健领域,群体智能正被用于改善诊断和治疗,从而改善患者的治疗效果和提高医疗保健系统的效率。SI 算法可以集成到医疗保健环境中,用于诊断和治疗癌症、心脏病、肿瘤和心脏病等疾病,它已应用于疾病诊断和治疗领域。它已被用于早期预测癌症并解决复杂问题。此外,它可以快速了解癌细胞如何对抗癌药物产生耐药性,这有助于改善药物开发并调整药物使用。通常,SI 算法用于 PSO、ICA、FA 和 IWO 中,用于诊断癌症以解决问题的优化。这反过来会提高 SI 在数据分析中的整体有效性。然而,将群体智能应用于癌症相关问题存在一些挑战。其中一些挑战包括癌症的复杂性、癌症分析、验证和临床转化、抵抗力和适应性等。必须通过改进算法和模型来克服这些挑战,使它们更高效、可扩展,更适合处理大规模和高维癌症数据集。或者,SI 在癌症检测中的主要应用是图像分析和模式识别,这有助于识别与癌组织相关的模式和特征,有助于早期检测和准确诊断。在癌症研究的 SI 领域,预计未来将取得多项进展。在癌症研究与多组学数据的整合、用于靶向药物输送的群体机器人等领域,SI 的一些潜在未来进展正在开发中。在这期题为“用于早期癌症检测的医疗数据分析中的群体智能”的特刊中,旨在探索使用群体智能技术的各个方面,包括适应性、维度、检测和预防、决策、未来发展和医疗数据的其他领域。感兴趣的主题包括但不限于以下内容:
摘要 癫痫是个体的一种慢性发作状态。脑细胞群反映出异常的电活动。脑电图 (EEG) 是一种监测大脑活动和诊断神经系统疾病的常用工具。在处理具有超高维度的复杂变换特征并从 EEG 中提取最佳特征时,对癫痫和非癫痫数据进行分类是一项具有挑战性的任务。本文提出了一种新的混合方法来选择最佳特征,该方法涉及粒子群优化 (PSO) 算法、新开发的概率粒子群优化 (PPSO) 算法和顺序差分进化 (SDE) 算法。癫痫患者的 EEG 数据已用于评估该方法。使用离散波长变换提取特征。PSO、PPSO 和 SDE 从 EEG 的特征空间中选择最佳特征。进一步使用不同的分类器评估这些最佳特征的性能。比较了 PSO、PPSO 和 SDE 的性能。本文对生物启发算法对脑电信号特征优化的重要性进行了广泛的研究。在所有分类器中,支持向量机 (SVM) 表现优异,在第 100 个周期时,PPSO 的准确率为 97.74%,SDE 的准确率为 98.34%。这表明最佳特征选择提高了分类器的性能。
确保建筑项目是安全的,例如堆叠结构,需要考虑在此期间免疫结构。桩定居点(PS)是一个重要的项目问题,并且正在引起广泛关注,以防止在施工开始之前发生故障。几个用于估算桩运动的项目可以帮助了解加载阶段的项目的观点。在PS模拟中使用了最聪明的策略用于桩运动的数学计算。因此,在本文中,考虑了精确的桩运动计算,考虑了开发的框架操作支持向量回归(SVR)以及亨利的气体溶解度优化(HGSO)和粒子群优化(PSO)。优化器的使用是调整SVR的一些内部设置。选择了使用已发达的SVR-HGSO和SVR-PSO结构的陆地岩石特征来研究基于土地岩石特征的桩的运动。使用五个指标来评估每个模型的性能。这项研究的主要目的是以两个开发模型的形式评估人工智能方法,以使用混合优化的框架模拟桩沉降速率。建模的R 2在0.99水平上类似地获得。SVR-PSO的RMSE分别出现超过两倍的SVR-HGSO,分别为0.46和0.29 mm。此外,测试阶段结果显示,SVR-HGSO的性能较高,MAE指数为0.278,比另一个索引低57.10%。OBJ通过0.283mm级别计算的SVR-HGSO证明了准确的建模。
性能。它们可以通过合理的连接混合和使用。系统具有电池高能密度和超级电容器的高功率密度的优势,并且可以优化电池的工作环境。超级电容器和蓄能器的混合储能系统的应用改善了微电网的电源质量,并改善了微电网的运行稳定性和经济性。为了更好地抑制功率波动的效果,混合储能系统的容量通常很大。,但是随着混合储能系统的能力增加,其成本也会增加[5]。混合储能系统的成本与其水平效果相矛盾。因此,非常有必要在经济和合理地配置混合储能系统的能力。
This paper presents the application of two swarm intelligence techniques, multi-objective artificial bee colony (MOABC) and multi-objective particle swarm optimization (MOPSO), to the optimal design of a complementary metal oxide semiconductor (CMOS) low noise amplifier (LNA) cascode with inductive source degeneration.目的是在电压增益和噪声数字之间实现平衡的权衡。优化的LNA电路在2.4 GHz的运行量为1.8 V电源,并在180 nm CMOS过程中实现。在MATLAB中实现了两种优化算法,并使用ZDT1,ZDT2和ZDT3测试功能进行了评估。然后使用Advance Design System(ADS)模拟器模拟了优化的设计。结果表明,MOABC和MOPSO技术在优化LNA设计方面是实用有效的,从而比以前发表的作品更好地性能,增益为21.2 dB,噪声图为0.848 dB。
摘要 — 在现实场景中部署空中集群机器人系统可能具有挑战性。使用它们来监测野火需要集群操作员轻松使用该系统。为了以最低的相关成本实现这一点,必须开发先进的框架来实时监测、优化和控制集群。实现这一点的一种方法是创建一个数字孪生,其中物理对应物可以在虚拟世界中镜像。我们的目标是创建一个集群的数字孪生,以便模拟和优化控制算法以及实时监控和控制,以便将集群系统部署到现场。我们的框架由以下主要子系统组成:用于优化集群控制器、监控和控制实时集群部署的数字孪生;允许数据在我们的系统组件之间传递的云基础设施;和飞机。我们开发了一个 Swarm Operator 界面,允许集群操作员定义集群的任务以监测区域以寻找数字野火。我们使用三架实体无人机和三架数字无人机在实地试验中测试了我们的系统。在试验期间,无人机群操作员能够命令无人机在三种不同的搜索策略中执行自主搜索、在特定位置成堆盘旋,最后着陆。
近年来,国家支持的项目试图提高残疾人的社会参与度。然而,即使是患有运动神经元疾病 (MND)、全滑行状态 (TSD) 等神经肌肉疾病的人,其沟通能力也会受到干扰。脑机接口 (BBA) 已有几十年的历史,研究数量呈指数级增长,目前正在开发中,以使患有此类疾病的人能够与周围环境进行交流。拼写系统是 BBA 系统,它可以检测人们在屏幕上的字母和数字矩阵上关注的字母,并通过应用程序将其转换为文本。在这种情况下,通过屏幕上字母的随机闪烁,它旨在检测由于刺激而导致大脑中发生的电变化。研究表明,个体遇到的刺激会导致 EEG 信号中出现一个振幅,称为 P300,介于 250 到 500 毫秒之间。脑机接口通过 EEG 信号为因中风或神经退行性疾病而行动受限的个体提供环境互动。 EEG 信号的多通道结构既增加了系统成本,又降低了处理速度。因此,通过在过程中检测更多活动电极来降低系统成本,可以提高人们的可访问性。在此背景下,在电极选择中使用优化技术,通过随机选择方法确定最有效的通道。在研究中,使用基于群体的优化技术之一的粒子群优化算法与两个分类器(SVM 和 Boosted Tree)一起使用,并确定了八个最常选择的通道,以提高系统在速度和准确性方面的性能。
Swarms of CubeSats for kW-scale Space-Based Solar Power (16U4SBSP) Executive Summary Report (ESR) Study Open Space Innovation Platform (OSIP) campaign, “Innovative Mission Concepts Enabled by Swarms of CubeSats” Affiliation(s): Sirin Orbital Systems AG (Prime, CH), Delft University of Technology (Sub 1, NL), University of Strathclyde (Sub 2, UK) Activity summary: The “16U4SBSP” mission concept is a fundamental technology demonstration step for the realization of kW-/MW-/GW-scale Space-Based Solar Power (SBSP) based on flight formation, a distributed or aggregated swarm of small satellites contrary to conventional concepts of monolithic giant SBSP satellites. In this mission, a swarm of 16U CubeSats collaboratively supply wireless power via Radio- Frequency waves to end-users in different locations on the ground, for instance to provide backup power for emergency situations, and also for space-to-space commercial use-cases.