合成缺口受体(Synnotch)系统是一个多功能平台,可诱导基因转录,以响应细胞外信号。但是,由于特定的激活要求,其应用主要仅限于膜结合目标。尚不清楚同步性同步性也可以靶向细胞外蛋白聚集体,例如阿尔茨海默氏病(AD)中的淀粉样蛋白β(Aβ)。为了解决这个问题,我们设计了一个靶向Aβ的同步受体,该受体控制着脑瘤的嵌合性人小鼠版本(Leqembi®)或aducanumab(Aduhelm®),两者均为FDA批准的AD抗体。我们证明了表达该同步系统的NIH 3T3细胞通过合成和分泌aducanumab或lecanemab来检测并响应细胞外Aβ聚集体。这些发现扩大了同步的潜在应用,将其靶标超出了膜结合的蛋白质,将其范围扩大到细胞外蛋白质聚集体,从而在该科学领域为研究提供了明显的好处。
使用嵌合抗原受体 (CAR) T 细胞治疗实体癌的难题是缺乏理想的靶抗原,这些靶抗原既绝对肿瘤特异性又均质表达。我们表明,多抗原引发和杀伤识别电路提供了灵活性和精确度,可以克服胶质母细胞瘤背景下的这些挑战。可识别特定引发抗原(例如异质但肿瘤特异性的胶质母细胞瘤新抗原表皮生长因子受体剪接变体 III (EGFRvIII) 或中枢神经系统 (CNS) 组织特异性抗原髓鞘少突胶质细胞糖蛋白 (MOG))的 synNotch 受体可用于局部诱导 CAR 表达。通过靶向同质但非绝对肿瘤特异性的抗原,这可以彻底但可控地杀死肿瘤细胞。此外,synNotch 调节的 CAR 表达可避免强直信号和衰竭,使更高比例的 T 细胞保持幼稚/干细胞记忆状态。在携带脑内患者来源异种移植瘤 (PDX) 且异质性表达 EGFRvIII 的免疫缺陷小鼠中,单次静脉输注 EGFRvIII synNotch-CAR T 细胞表现出比传统组成性表达 CAR T 细胞更高的抗肿瘤功效和 T 细胞持久性,且不会杀死肿瘤外细胞。用中枢神经系统特异性抗原 MOG 引发的 synNotch-CAR 电路转导的 T 细胞也表现出对脑内 PDX 的精确和有效控制,而没有证据表明在脑外引发。总之,通过使用整合对多个不完善但互补抗原的识别的电路,我们提高了针对胶质母细胞瘤的 T 细胞的特异性、完整性和持久性,从而提供了适用于其他实体肿瘤的通用识别策略。
结果:我们通过设计传统 CD4 + T 细胞和合成 Notch (synNotch) 调节回路来设计合成抑制性 T 细胞,以驱动抗原诱导的定制抗炎有效载荷的产生。通过探索多种多药物抑制程序库,我们发现最有效的阻断细胞毒性 CD4 + 和 CD8 + T 细胞活性的合成抑制性 T 细胞结合了抗炎因子[例如白细胞介素 10 (IL-10)、转化生长因子 - b 1 (TGF b 1)、程序性死亡配体 1 (PD-L1)] 和促炎细胞因子库(例如 IL-2 受体亚基 CD25),模仿调节性 T 细胞的整体进化设计。诱导 CD25 的抑制程序会同时驱动 IL-2 消耗和抑制性 T 细胞的优先扩增,从而形成一个正反馈回路,进一步增加局部抗炎有效载荷的产生。
结果:我们创建了一组脑感应 T 细胞,这些细胞被编程为局部递送针对癌症或神经炎症定制的治疗有效载荷。首先,我们使用公开的表达数据确定了一组 CNS 特异性细胞外配体,以建立潜在的大脑“ GPS ”标记。我们确定了诸如短蛋白聚糖 (BCAN) 之类的蛋白质,它们是大脑高度独特的细胞外基质的组成部分,可能被用于组织特异性识别。我们筛选了针对这些 CNS 特异性抗原的抗体,并用它们构建了 CNS 激活的合成 Notch (synNotch) 受体,这种受体经过工程改造,可以感知细胞外抗原并通过诱导转录反应做出反应。为了证明这种方法的治疗潜力,我们利用这个平台局部诱导了一组针对不同 CNS 疾病的基因编码有效载荷。诱导 CAR 表达的脑感应 T 细胞能够治疗原发性和继发性脑癌,包括胶质母细胞瘤和乳腺癌转移的小鼠模型,而不会对脑外组织进行脱靶攻击。相反,中枢神经系统诱导的免疫抑制细胞因子白细胞介素 10 (IL-10) 表达改善了实验性自身免疫性脑脊髓炎(多发性硬化症的小鼠模型)中的神经炎症。
中枢神经系统(CNS)通常被认为是“免疫特权”部位。但是,如在自身免疫条件下观察到的,T细胞可以通过趋化因子轴和多步粘附过程横穿血脑屏障(BBB)。我们通过报告了整联蛋白非常后期的抗原4(VLA4)和趋化因子受体CXCR3的关键作用,从而做出了长期的贡献。GBM安全有效的嵌合抗原受体(CAR)T疗法的发展必须克服多个挑战,包括靶向外肿瘤毒性,抗原表达的异质性和耗尽Cart细胞的挑战。为此,我们采用了一种新型的合成缺口(Synnotch)受体系统,并开发了创新的T细胞回路,这些电路基于“ Prime and-and-kill”策略识别肿瘤细胞。在该系统中,第一种抗原仅在GBM细胞(例如Egfrviii)上表达,T primes T细胞诱导识别IL-13Rα2和EPHA2的CAR表达,从而消除胶质母细胞瘤(GBM)细胞表达EPHA2或IL-13M2。我们报道说,EGFRVIII合成的EPHA2/IL-13Rα2CAR(E-SYNC)有效地受到EGFRVIII的限制,因为EGFRVIII是GBM特异性的信号,从而完全消除了与Orthopic患者的攻击,没有正常人的源自孔氏菌EGFRVIII, epha2/il-13rα2阳性细胞在CNS之外。此外,这些同步式的细胞比常规的EPHA2/IL-13Rα2CART细胞更有效,与出色的持久性相关,并且在表型中比常规的CART细胞更有效。我们最近开放了I阶段研究,评估了GBM患者(NCT06186401)的E-SYNC T细胞。