机器人学科正在探索用于多发性硬化症 (MS) 上肢康复的精确而通用的解决方案。多发性硬化症患者可以从机器人系统中受益匪浅,这有助于对抗这种疾病的复杂性,这种疾病可能会损害他们执行日常生活活动 (ADL) 的能力。为了展示智能机电设备在上述临床领域的潜力和局限性,本综述旨在提出一个简明的 SWOT(优势、劣势、机会和威胁)分析,以分析多发性硬化症中的机器人康复。通过 SWOT 分析(一种主要在企业管理中采用的方法),本文探讨了可能促进或阻碍多发性硬化症上肢康复机器人采用的内部和外部因素。随后,本文讨论了与另一类交互技术(虚拟和增强环境的基础系统)的协同作用如何增强优势、克服劣势、扩大机会并处理多发性硬化症康复机器人中的威胁。这些数字化环境的强大适应性(广泛用于 MS 康复,甚至可以在安全的模拟环境中完成类似 ADL 的任务)是提出这种方法以应对上述 SWOT 分析的关键问题的主要原因。该方法论提案旨在为制定进一步的协同战略铺平道路,这些战略基于医疗机器人设备与其他有前景的技术的整合,以帮助 MS 的上肢功能恢复。
在双重转型议程中,工业 4.0 议程中的数字技术与循环经济议程之间的关系被认为是互惠互利的。然而,该议程处于前范式阶段,其中双重关系主要在概念层面上进行讨论。同时,制造商面临着从任何一种转型中实现持续绩效改进的挑战。因此,本研究采用多案例研究方法,调查十家丹麦制造商中物联网 (IoT) 与循环经济 (CE) 之间的协同关系,作为双重转型议程构成结构的代表。据此,本研究提出了两个基于经验的两者协同关系命题:物联网通过数据能力的累积积累及其与特定价值主张的联系,实现了循环经济的参与。同时,在采用循环经济作为设计参数时,数字技术的价值和目的被提升到战略视角。
摘要:能源储存是英国能源系统转型的重要组成部分,是稳定间歇性可再生电力供应和满足季节性需求变化的关键机制。低碳氢为可变的可再生能源供需提供了一种平衡机制,也是一种降低家庭供暖碳排放的方法,这对于实现英国 2050 年的净零目标至关重要。多孔岩石中的地质氢储存可在各种时间尺度上提供大规模能源储存,并且由于英国海上碳氢化合物油田广泛可用、已建立油藏和现有基础设施而具有良好的前景。本文探讨了英国大陆架油田的储存潜力。通过比较可用的能源储存容量和当前的国内天然气需求,我们量化了使英国天然气网络脱碳所需的氢气。我们估计总氢气储存容量为 3454 TWh,大大超过了 120 TWh 的季节性国内需求。在与专家焦点小组协商后,多标准决策分析确定了与海上风电结合的最佳领域,这可以促进大规模可再生氢的生产和储存。这些结果将用作未来能源系统建模的输入,在能源转型的背景下优化海上石油和天然气与可再生能源部门之间的潜在协同作用。
摘要:蛋白质质量控制机制在癌症进展中发挥着重要作用,它提供适应性反应和形态稳定性,以应对全基因组拷贝数变异、非整倍体和构象改变的体细胞突变。这种对蛋白质质量控制机制的依赖产生了一种脆弱性,可以通过针对蛋白质质量控制机制的成分来利用这种脆弱性获得治疗益处。最近,含缬氨酸蛋白 (VCP),也称为 p97 AAA-ATPase,已成为癌细胞中可用于药物治疗的靶点,以影响它们对蛋白质质量控制的依赖性。在这里,我们表明 VCP 抑制剂会在几种卵巢癌细胞系中诱导细胞毒性,这些化合物与米非司酮协同作用,米非司酮是一种先前被证明会诱导非典型未折叠蛋白反应的药物。虽然临床上可达到的剂量的米非司酮会诱导较弱的未折叠蛋白反应,但它会增强 VCP 抑制剂 CB-5083 的细胞毒性作用。从机制上看,米非司酮阻断了 ATF6 在内质网 (ER) 应激反应中的细胞保护作用,同时通过 HRI (EIF2AK1) 介导的信号转导途径激活 ATF4 和 CHOP 的细胞毒性作用。相反,CB-5083 通过 PERK (EIF2AK3) 介导的信号通路激活 ATF4 和 CHOP。这种组合激活了 ATF4 和 CHOP,同时阻断了 ATF6 提供的适应性反应,从而增强了细胞毒性作用和协同药物相互作用。
消费和生产(SCP) - 确实在整个可持续发展目标方面协同效益。此外,前瞻性,创新的业务和其他组织已经开始采用循环经济实践和技术,而这反过来又是针对东南亚地区循环经济过渡的业务行动。该活动将汇集政策制定者和利益相关者,以讨论与可持续发展目标(SDG)8紧密结合的循环经济的重要性,该目标强调促进所有人促进包容性,可持续的经济增长,就业和体面的工作,SDG9对创新和SDG12在可持续消费和生产方面。循环概念和最佳实践应嵌入经济体系,政府,企业和社区中,以创造一种弹性,资源有效的经济。
“ AI和量子科学技术与空间应用之间的协同作用的协作潜力”:UN 2025 IYQ IYQ 60届联合国Copuos-STSC,维也纳,2月5日至14日,2025年2月5日至14日
摘要近年来,人工智能(AI)已成为医疗保健中的变革力量,通过智能技术解决方案彻底改变了患者护理。本文探讨了AI对患者护理的深远影响,尤其是在疫苗开发和新颖的癌症医学方法的领域。通过利用AI算法和机器学习技术,医疗保健提供者可以提高诊断准确性,个性化治疗计划并改善整体患者结果。此外,AI驱动的进步已经大大加速了疫苗开发过程,从而可以快速创建用于新兴的传染病并加强全球免疫努力的疫苗。此外,AI是癌症医学的开创性新方法,从早期检测方法到针对特定遗传突变的定制疗法。本文深入研究了AI技术与医疗保健的交集,强调了其改变医疗保健和塑造医学未来的潜力。关键字:人工智能,医疗保健,患者护理,疫苗开发,癌症医学,精密医学,个性化治疗,诊断准确性,机器学习,计算能力,早期检测,免疫,全球健康,创新,变革性技术
储能系统可通过提供各种能源系统服务,为未来平衡低碳能源系统做出重要贡献,随着创新成本下降,电池有望得到广泛部署。本文评估了如果使用电池储能系统 (BESS) 提供这两种服务,其中最重要的两项服务,快速响应或所谓的增强频率响应 (EFR) 和能源套利之间是否存在协同作用。开发了一个技术经济模型来模拟 600 个可能的增强频率响应可用性窗口。结果表明,两种存储服务之间存在两种不同的协同作用。第一个协同作用考虑了在死区之外对储能系统充电以提供增强频率响应的可能性。我们提出了一种创新的充电状态管理策略来利用这种协同作用。第二个协同作用是由于套利收入高度集中在高峰时段,这可以使电池储能系统捕获大部分套利收入,而不会过度减少存储系统在增强频率响应中提供容量的收入。这两种协同效应的结合意味着,通过交替提供套利和频率响应,电池储能系统可以提高 25% 的运营利润。历史数据显示,这一结果在统计上是可靠的。满功率下放电时间为 1.5-2 小时的电池尺寸可能是利用这些协同效应的最佳选择。
Key Principles – Anchor on Focal Areas Tackle “drivers” across scales, sectors Deliver GEBs mapped to Core Indicators Considers “horizontal” and “vertical” dimensions Harness synergies and manage or avoid negative tradeoffs Foster knowledge exchange and learning Dealing with complexity
The Hong Kong Chief Executive's 2020 Policy Address unveiled some of our proposed developments that will create new synergies with the Airport City. On the Hong Kong Boundary Crossing Facilities (HKBCF) Island connected to the Hong Kong-Zhuhai-Macao Bridge, we are building two automated car parks with a total capacity of around 6,000 spaces and an autonomous transportation system linking the HKBCF Island to SKYCITY and the Tung Chung MTR Station. These projects will provide much greater convenience for passengers travelling between HKIA and the Greater Bay Area ( GBA).