将上转换纳米颗粒(UCNP)的尺寸减少到几nm,从而产生了包含很少数量的发射器的发光材料。考虑到一个前所未有的平台,考虑一个粒子超级UCNP的底部限制,以研究Upconversion发光时发挥作用的不同能量传输的贡献。尽管发射离子数量有限,并且高表面与体积的比例仍需要合适的粒子结构,但仍能保持可检测的发射。na(gd-yb)f 4:TM 3 +发射的亚sub-3 nm直径𝜷-相位UCNP是使用富含gadolinium的成分的原位混合前体和微波高温循环序列制备的,从而允许精确控制粒度和分散性。这些核心涂有NAGDF 4惰性壳,以最大程度地减少表面淬火的有害影响(SQ)。时间分辨的发光测量结果结合了YB 3 +敏化器的标准NIR激发和TM 3 +激活剂的直接UV激发,以量化交叉松弛和表面淬火过程。通过优化的合成途径对每个粒子的活化剂数量进行了调整,同时使用适当的激发方案,可以对这些模型纳米粒子中的不同机制进行准确的分析,并表征核心壳结构的结构。
简短的背景:气候变化和生物多样性损失威胁着我们星球在所有社会生态和社会经济水平上。气候变化和生物多样性变化本质上是相互联系的。每个人都会根据变化的方向恶化或改善对方的影响,这使得其组合管理对于拥有可居住的气候,自我维持的生物多样性以及所有人的生活质量至关重要。尽管气候变化和生物多样性变化以复杂的相互依存方式相互影响,但它们通常在自己的研究学科中单独解决,因此互联界和反馈通常无法完全解决。了解社会决定因素和气候生物多样性相互作用的含义为减轻对人和自然的互惠效应提供了机会,对世代代内和几代人的公平产生了影响。
摘要 - 我们介绍了DeepDecs,这是一种用于合成校准系统正确构造软件控制器的新方法,这些系统使用深神经网络(DNN)分类器,用于他们决策过程的感知步骤。尽管近年来在深度学习方面取得了重大进展,但为这些系统提供安全保证仍然非常具有挑战性。我们的控制者合成方法通过将DNN验证与验证的Markov模型的合成来解决这一挑战。综合模型对应于确保满足自主系统的安全性,可靠性和性能要求的离散事件软件控制器,并且相对于一系列优化目标,帕累托是最佳的。我们通过使用该方法来评估模拟方法的方法来合成移动机器人碰撞限制的控制器,并在共享控制自动驾驶中保持驾驶员的专注。
通过自动化启用Johann L. Rapp†§,Meredith A. Borden†§,Vittal Bhat†,Alexis Sarabia†,Alexis Sarabia†和Frank A. Leibfarth† *§添加剂制造,聚氨酯,聚合物网络,半自动批次合成,弹性体
要描述的实验与组蛋白在核功能中的作用有关,特别强调了生物合成反应,这些反应通过引入乙酰基和甲基来改变组蛋白的结构。使用乙酸-C14和蛋氨酸 - 甲基-C'4在孤立的小牛胸腺核中研究了这些反应(参见参见参考文献1)作为前体,将它们的不合格与C14-赖氨酸和其他氨基酸的不合格进行比较,并测试普罗蛋白对不同组蛋白分数的合成的影响。将提供证据,以表明在细胞核中,组蛋白的乙酰化和甲基化很可能发生在多肽链完成后。尤其是乙酰化的组蛋白结构的这种修饰可能会影响组蛋白在体内抑制核糖核酸合成的能力。这种观点得到了以下发现的支持:当孤立的精氨酸组蛋白经过有限的乙酰化时,它们会因小牛胸腺核的DNA依赖性RNA聚合酶的RNA合成抑制剂而失去了许多有效性,因此它们的有效性很大。然而,这种修饰的组蛋白仍然是强烈的碱性蛋白质,它保留了与其得出的母体组蛋白相当的DNA的亲和力。这些发现介绍了组蛋白对核RNA的影响可能涉及的可能性不仅仅涉及对RNA合成的简单抑制,并且可能存在更微妙的机制,这些机制允许抑制和重新激活RNA沿染色体的RNA产生。在过去的几年中,对组蛋白作为染色体活性的调节剂的兴趣已大大提高,因为越来越多的实验证据已经积累了支持组蛋白的作用是抑制染色体
IISC BANGALORE材料工程系著名教职员工Ashok M. Raichur教授领导着一个研究小组,专注于在生物医学和环境领域应用纳米技术的应用。 他目前的工作包括开发用于基因疗法和抗癌药物的下一代药物输送系统,为环境应用创建聚电解质/纳米颗粒多层,并为高级感官技术设计纳米结构的多层化器。 此外,他的群体还开创了2D和3D结构作为环氧纳米复合材料的填充物的发展。 Raichur教授的贡献反映了他在材料合成,表面工程和创新应用方面的专业知识,使他成为跨学科材料研究的关键人物。IISC BANGALORE材料工程系著名教职员工Ashok M. Raichur教授领导着一个研究小组,专注于在生物医学和环境领域应用纳米技术的应用。他目前的工作包括开发用于基因疗法和抗癌药物的下一代药物输送系统,为环境应用创建聚电解质/纳米颗粒多层,并为高级感官技术设计纳米结构的多层化器。此外,他的群体还开创了2D和3D结构作为环氧纳米复合材料的填充物的发展。Raichur教授的贡献反映了他在材料合成,表面工程和创新应用方面的专业知识,使他成为跨学科材料研究的关键人物。
摘要:最近对过渡金属二硫属化物 (TMD) 纳米带的研究促进了这些尺寸受限晶体的受控生长合成策略的发展。我们展示了在由用磷化氢处理的 Si(001) 组成的设计表面上生长的 MoSe 2 纳米带的宽度控制合成。调节载气流中的 H 2 分压可以将纳米带宽度调整到 175 nm 到近 500 nm 之间。实验和模拟表明,H 2 暴露增加了 Si-P 二聚体上氢的表面覆盖率,而 Si-P 二聚体通常是纳米带成核和生长的有利区域。此外,MoSe 2 纳米带表现出异常光致发光蓝移,其幅度为 60 meV,与 MoS 2 纳米带的光发射光谱中报道的幅度相似。这些研究表明,最近开发的纳米带的基底定向生长策略可以扩展到硒化物系列 TMD。此外,它们扩展了制备复杂 TMD 异质结构的合成基础,而这种结构是光学和量子传感器、换能器和处理器所必需的。关键词:过渡金属二硫属化物、纳米带、MoSe 2 、表面、光致发光、激子■ 简介
图 2:MnAs x Sb 1-x(x = 0.1 - 0.8)纳米粒子的 PXRD 图案,以 Si 标准为标准。Si 的峰值以星号显示(MnSb-PDF#-03-065-0388)
达尔文的断言“目前仅仅是垃圾思考”不再有效。通过合成生命的起源(OOL)从其成立到最近的发现,重点是(i)(i)原本证明的益生元证明的益生元证明,以及(ii)古代RNA世界的分子文物,我们对科学对OOL和RNA世界的理解进行了全面的现实描述。基于这些观察结果,我们巩固了RNA在编码蛋白和DNA基因组之前进化的共识,因此生物圈始于RNA核心,其中许多翻译设备和相关RNA架构在RNA转录和DNA复制之前就产生。这是一个结论,即OOL是化学演化的逐步过程,涉及益生元化学的一系列过渡形式,并且是最后一个普遍的共同祖先(LUCA),在此期间,RNA起着核心作用,并且已知许多事件及其相对的事件及其相对顺序。这一综合的综合性质也扩展了以前的描述和概念,并应有助于为未来的问题和实验提供有关古代RNA世界和OOL的实验。