遗传密码研究探索了生命的基本语言,旨在了解 DNA 如何协调蛋白质的合成。本研究探索了遗传密码的各个方面,从广泛使用的三联体密码子系统到转移 RNA (tRNA) 在翻译中的重要作用。本研究揭示了密码子和反密码子之间相互作用的复杂性以及核糖体的协调,阐明了蛋白质合成的起始、延长和终止阶段。此外,它还深入研究了影响翻译过程的调节因素和质量控制机制。在探索遗传密码的进化过程中,本研究仔细研究了它的普遍原则、例外情况以及围绕其起源的令人信服的猜想。tRNA 和密码子的共同进化,以及在不同生物体和细胞器中观察到的密码的适应性,提供了有价值的见解。值得注意的是,这项研究强调了基因工程、密码子优化和蛋白质设计等广泛的生物技术应用。这项研究不仅解决了遗传密码研究中的未知领域,还提出了未来的研究方向。它强调了该领域当前的挑战和机遇,包括密码扩展和基因编辑进步。最终,遗传密码研究仍然是一个充满活力、不断发展的领域,对科学、技术和我们对生命基本过程的理解具有深远的影响。这项研究揭示了遗传密码的迷人故事,揭示了继续吸引和启发人们的新领域和应用。
背景:Epetraborole(EBO)是含硼的口服叶木基-TRNA合成酶的口服抑制剂,这是蛋白质合成中必不可少的酶; EBO表现出对非结核分枝杆菌的有效活性。这些研究评估了EBO的口服剂量(PO)针对慢性小鼠感染模型中的5 M. Avium复合物(MAC)菌株作为单一疗法或与标准护理[SOC;克拉霉素(CLR),利法布丁(RFB),ethambutol(emb)]方法:针对Avium 2285R M. 2285r评估EBO的试验性慢性疗效研究,每天1、10、30、100、300和500 mg/kg PO每天(QD)(QD),而不是250 mg/kg/kg Clr PO QD。C57BL/6小鼠用1x10 11 CFU的肺气溶胶感染。从感染后第28天开始进行56天的治疗。在感染后第1、28和84天评估肺中的细菌负担(CFU),通过在Middlebrook 7H11木炭琼脂板上镀匀性稀释液。与MAC的SOC治疗(CLR 250 mg/kg,RFB 100 mg/kg,100 mg/kg),EBO剂量为100、200、300或400 mg/kg QD评估了4株Mac菌株。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。 结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。 在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。 结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。在一组未感染的小鼠中确定了EBO的口服暴露(表1)。结果:在对Avium 2285R的一项研究中,生物膜形成菌株,EBO在所有剂量上测试的EBO明显好于以250 mg/kg剂量的CLR(图1),并且在含有EBO的琼脂平板上检测到NO NO CFU(16 mg/L)。在随后的研究中,将SOC与其他4种MAC菌株中的EBO进行了比较(图2)。结论:在这种慢性小鼠肺部感染模型中,在第84天未检测到Avium 2285R的EBO耐药性发展。EBO单一疗法的功效比SOC比对Avium ATCC 700898更好,而与M. Intacellulare 1956,M。el. ellacelulare DNA00055和M. el. ellacululare DNA00111相比,与2-4.8 log 10相比,它与M. Intarululare DNA00055和M. M. soc一样好。在测试的所有四种菌株中,200 mg/kg EBO近似于500 mg的人口腔等效剂量,与单独使用SOC相比,SOC的细菌杀死从1.4-3.0 log 10 CFU增加,从而导致总肺CFU降低总量为4.6-5.6 log 10。eBO与5种MAC菌株具有有效的体内功效,并在与SOC结合使用时会显着提高功效,从而支持EBO的进一步临床发育。
练习论文问题1。绘制DNA双螺旋。 描述其主要特征。 添加有关DNA函数的注释。 2。 定义RNA。 分类。 写每个结构和功能。 3。 简要描述核酸。 简短问题1。 名称不同类型的RNA。 写出mRNA的主要功能和功能。 2。 DNA和RNA之间的名称差异。 3。 绘制tRNA的三叶草叶结构。 标记其不同的部分。 提及tRNA的功能。 4。 如何组织真核DNA? 5。 将以下(a)DNA解释为基因(b)DNA的变性6。 写核酸的功能。 7。 写下有关DNA多态性的注释。 8。 细菌DNA的组织方式。 9。 写原核生物和真核DNA之间的差异。 10。 定义质粒。 举一个例子。 写下它的重要性。 11。 写下核小体的注释。 12。 解释核糖体RNA。 它与其他RNA有何不同? 13。 写下关于RNA异常基础的注释。 多项选择问题1。 每个多核苷酸链(A)都有方向。 (b)具有5'和3'的结尾。 (c)有方向和两个端。 (d)具有磷酸二酯链接。 2。 attata是DNA段的序列。 每个字母代表(a)基地。 3。绘制DNA双螺旋。描述其主要特征。添加有关DNA函数的注释。2。定义RNA。分类。写每个结构和功能。3。简要描述核酸。简短问题1。名称不同类型的RNA。写出mRNA的主要功能和功能。2。DNA和RNA之间的名称差异。3。绘制tRNA的三叶草叶结构。标记其不同的部分。提及tRNA的功能。4。如何组织真核DNA?5。将以下(a)DNA解释为基因(b)DNA的变性6。写核酸的功能。7。写下有关DNA多态性的注释。8。细菌DNA的组织方式。9。写原核生物和真核DNA之间的差异。10。定义质粒。举一个例子。写下它的重要性。11。写下核小体的注释。12。解释核糖体RNA。它与其他RNA有何不同?13。写下关于RNA异常基础的注释。多项选择问题1。每个多核苷酸链(A)都有方向。(b)具有5'和3'的结尾。(c)有方向和两个端。(d)具有磷酸二酯链接。2。attata是DNA段的序列。每个字母代表(a)基地。3。(b)核苷。(c)核苷酸。(d)嘌呤和嘧啶碱。Shine-Dalgarno序列存在于(a)真核mRNA中。(b)原核生物mRNA。(c)在原核mRNA的5'末端。(d)在真核mRNA的3'末端。4。核糖体是(a)核酸。(b)蛋白质。(c)核糖核蛋白。(d)核小体。5。环路(a)是由于链内碱基的配对而引起的。(b)由于链间底座配对。(c)由于互补碱基之间的链内基碱基对。(d)参与遗传信息的转移。填写空白
Har Gobind Khorana是分子生物学史上的高耸人物,可以说是20世纪最著名的化学家之一。先驱对阐明遗传密码和具有定义序列的DNA和RNA的合成的贡献是该遗产的一部分。他是合成生物学的父亲,首先是用于化学合成指定序列的短DNA片段,并使用DNA聚合酶复制这些序列,然后将此DNA模板与RNA聚体转录为RNA中的RNA将RNA转录为RNA,以在蛋白质合成1中使用,第二,第二,第二种序列,并将其连接到Spart Pynthety DNA segments中。2这本科学为许多开创性发现和生物技术行业的发展奠定了基础。后来,他对七个跨膜螺旋螺旋的开创性工作也为几代膜生物学家遵循并引起了他所谓的“整体膜蛋白质黄金时代”的途径。 1970年实现了一个基因的第一个化学合成,用于tRNA的编码,并在1979年完成了具有所有必要序列的所有必要序列的完全活性tRNA基因。3,4这种科学本质上是化学的,是由分子生物学中新兴概念驱动的,在化学中至关重要的是生物学领域,并创造了1970年代中期重组DNA革命的重要组成部分。这些非凡的成就掩盖了印度一个小村庄的谦虚起源的生活故事,在英国和德国进行培训
167 168图1。L.(L。)墨西哥具有保存良好的NAT10同源物。A.在人类,墨西哥L.和S. cerevisiae中分布169个Nat10域。所有三个物种共享Nat10酶功能的170个必需域:TMCA,解旋酶,GNAT和TRNA。每个域上方的数字171表示每个域内氨基酸的起点和末端位置。172不同利什曼原虫物种和酿酒酵母之间Nat10的序列身份约为173,约为36%,而L.(L。)墨西哥和人类Nat10之间的身份为39.4%。174 L.(L。)墨西哥的GNAT结构域分别显示为43.86%和46.43%的序列身份,分别与175个酿酒酵母和人类中的175个相应域。B.预测了L.(L。)墨西哥,酿酒酵母的176 Nat10蛋白的3D结构,以及人类突出了GNAT(蓝色),177个TRNA结合(红色),TMCA(紫色)和解旋酶(绿色)(绿色)领域,表明L.(L.)178墨西哥蛋白质具有高度的水平。179 C. GNAT结构域的结构覆盖层显示了三种蛋白质中的高度结构保护180,进一步说明了该关键功能域中的相似性。181 182
蛋白质合成是在所有生物体中发生的重要细胞过程,涉及蛋白质的产生。此复杂的过程由两个阶段组成:转录和翻译。转录发生在细胞核内,DNA充当产生信使RNA的模板(mRNA)。mRNA然后传播到细胞质的核糖体,这是翻译的位置。在这里,mRNA携带的遗传信息被解码以合成多肽链。**转录**是蛋白质合成的初始阶段,其中DNA的遗传密码被转录为mRNA。当RNA聚合酶附着在基因的启动子序列上时,此过程就开始了,促使DNA放松。酶然后读取DNA碱基并组装互补的mRNA链。用作模板的DNA链被称为模板或反义链,而其对应物是非编码或感官链。新形成的mRNA链反射了编码DNA链,尿嘧啶代替了胸腺素。**处理mRNA **涉及新合成的mRNA的进一步细化,也称为前mRNA。在它可以将细胞核作为成熟的mRNA退出之前,它会经历剪接,编辑和聚腺苷酸化,从而改变mRNA以准备翻译。对于有兴趣可视化此过程的人,**蛋白质合成流程图**可以是一个有用的工具。它提供了从DNA转录到最终蛋白质产物的蛋白质合成每个步骤的清晰结构化表示。此外,mRNA经过编辑,改变了某些核苷酸。这样的流程图可以帮助理解基于这种基本生物学功能的复杂相互作用和机制。遗传修饰增强了单个基因的多功能性,使其能够产生多种蛋白质。这是通过称为剪接的过程来实现的,该过程从蛋白质合成流程图中描述了从信使RNA(mRNA)中去除被称为内含子的非编码区域。剪接的mRNA仅由编码区域或外显子组成,这直接有助于蛋白质合成。核糖核蛋白,核中含有RNA的小蛋白,可促进该剪接。例如,由于这种编辑,参与血液中脂质转运的APOB蛋白以两种形式存在。较小的变体是由于插入的停止信号截断了mRNA的插入信号。5'上限过程为mRNA的铅端增加了一个保护性的甲基化盖,从而保护了它免于降解和辅助核糖体附着。一系列腺嘌呤碱基的尾巴标志着mRNA的结论,在其核出口和防御降解酶的防御中发挥了作用。分子生物学的中心教条概述了从RNA到蛋白质的过渡,这一过程称为翻译。这涉及将mRNA中的遗传代码读取以合成蛋白质,如流程图所示。后加工,mRNA将核和核糖体缔合,由核糖体RNA(rRNA)和蛋白质组成。核糖体解密mRNA序列,而转移RNA(tRNA)分子依次传递适当的氨基酸。翻译分为三个阶段:启动,伸长和终止。在开始期间,现在在细胞质中的mRNA与甲基化帽和起始密码子位点的核糖体亚基结合。具有与起始密码子连接的具有匹配的反物质的tRNA,形成了起始复合物。伸长涉及连续供应氨基酸的TRNA,这些氨基酸被添加到新生的多肽链中。每个tRNA转移后其氨基酸后出发,使核糖体沿mRNA进行进展,从而为下一个tRNA腾出空间。这种系统的添加氨基酸构建了多肽,直到该过程结束为止。蛋白质合成是一个重要的细胞过程,最终导致蛋白质的产生。它在两个主要阶段展开:转录和翻译。在转录过程中,DNA的遗传密码被转录为核中的信使RNA(mRNA),包括三个阶段:启动,伸长和终止。mRNA然后将这些遗传指令传输到发生翻译的细胞质核糖体。由核糖体RNA(RRNA)和蛋白质组成的核糖体读取mRNA序列。转移RNA(tRNA)分子根据mRNA代码将适当的氨基酸带入核糖体。rRNA促进了这些氨基酸的粘结,形成了多肽链。该链可能会进一步进行合成后修饰以实现其最终蛋白质结构。mRNA退出核之前,它会经过加工,成为准备翻译的成熟转录本。蛋白质合成的过程与分子生物学的中心教条一致,该过程映射了生物系统中遗传信息的流动。合成后,多肽链可能会折叠成特定的形状,与其他分子相互作用,或在内质网中进行其他修饰以实现其指定的功能。
RNA 疗法是使用 RNA 形式的较短遗传物质序列来治疗或预防疾病。由于 RNA 序列和大小的类型很多,会影响细胞功能,因此 RNA 疗法有很多种类型。这些类型包括 mRNA、ASO、miRNA、核糖体 RNA、siRNA 和 tRNA。这些疗法通常涉及基因沉默,即沉默基因以阻止其产生有毒蛋白质。这些类型的疗法通常需要重复给药,因为它们不会永久改变我们的任何 DNA。
DNA 分子为蛋白质生产提供信息,这对于维持生命的过程和细胞繁殖至关重要。就像一本书一样,DNA 具有可以分解成字母以传达特定指令的部分和代码。这些指令以信使 RNA (mRNA) 的语言编写,信使 RNA 与 DNA 结合以制作基因的 RNA 副本。mRNA 通过找到由氮碱基编码的起始点序列或“单词”来“读取”DNA。该过程被组织成基因,起始序列作为章节页面。然后,mRNA 链离开细胞核并前往细胞质,在那里通过涉及转移 RNA (tRNA) 分子的过程将其翻译成蛋白质。DNA 可以比作一个信息库,其中以编码格式存储蛋白质合成的指令。遗传物质被组织成称为基因的部分或“章节”,其中包含生产蛋白质的必要代码,这些蛋白质可执行维持生命的过程并为细胞繁殖提供必需的化合物。这些基因由氮碱基腺嘌呤 (A)、鸟嘌呤 (G)、胞嘧啶 (C) 和胸腺嘧啶 (T) 组成,它们按特定顺序排列,以传达特定的信息或指令。信使 RNA (mRNA) 分子读取此编码序列,然后形成 DNA 模板的互补碱基链。mRNA 包含“密码子”——编码氨基酸的三个核苷酸碱基——并进入细胞质,在那里通过结合转移 RNA (tRNA) 分子执行其指令。就像食谱包含制作食物的食谱一样,细胞的 DNA 是构建和维持生命的说明书,其遗传密码指导蛋白质的产生并促进基本细胞功能。
植物RNA病毒被用作在病毒繁殖和运动期间高水平积累和有效扩散的递送向量。利用了这一概念,可以开发用于CRISPR-CAS9基因组编辑的几个基于病毒的指南RNA输送平台。CRISPR-CAS9系统也已改编成表观基因组编辑。虽然已经为基于CRISPR-CAS9的基因激活或位点特异性DNA去甲基化而开发了系统,但导致RNA的病毒传递仍有待开发。为了解决这一差距,我们开发了一种基于拟南芥的表观基因组编辑的基于烟叶病毒(TRV)的单个指南RNA输送系统。由于已证明tRNA样序列可以促进植物中RNA的细胞向细胞运动,因此我们使用tRNA指示RNA表达系统来表达从病毒基因组中引导RNA,以促进可遗传的表观基因组编辑。我们证明,具有TRV的tRNA-GRNA系统可用于拟南芥中开花wageningen基因的转录激活和靶向DNA脱甲基化。我们在接种植物的后代中诱导的脱甲基表型的遗传力达到了〜8%。我们没有在下一代中检测到病毒,表明从植物组织中对病毒有效清除。因此,TRV递送与特定的trna-grna结构相结合,提供了快速有效的表观基因组编辑。
1个生命科学学院,Jawaharlal Nehru大学,印度新德里,美国亚特兰大2号埃默里大学[P3]基于植物化学的抗淀粉样蛋白银纳米颗粒Om Prakash Mahato Mahato,Kailash Pd。prajapati,Bibin g anand,Shikha Mittal,M。Ansari,Karunakar Kar Life Sciences,Jawaharlal Nehru大学,印度新德里,印度新德里[P4] C. bictyaltransement and sudha kyhha,Sudha,Sudha,Sudhha,Susran sharha,Sudha sharmath sharha,萨穆德拉拉·古林纳特(Samudrala Gourinath)科学,印度新德里的贾瓦哈拉尔·纳赫鲁大学[P6]氨基酰基-TRNA合成酶:药物发现的基本目标,阿米特·沙尔马分子医学 - 结构性寄生虫学小组,国际基因工程和生物技术中心,基因工程和生物技术中心D-Crystallin在印度新德里的Jawaharlal Nehru大学Rajesh Mishra生物技术学院的酸性和生理pH Indu [P8]疟疾和生化描绘疟疾苯丙氨酸苯胺-TRNA合成酶(FRS)。Nachiappan Mutharasappan,Yogavel Manickam,Jyoti Chhibber-Goel,Amit Sharma分子医学 - 结构性寄生虫学小组,国际基因工程与生物技术中心,新德里,印度,