使用时间相关哈密顿量控制量子系统对于量子技术至关重要 [1] ,它可以实现状态转移和门操作。一项重要任务是确定如何使此类过程实现最佳性能。在理想的封闭量子系统中,只要有足够的时间,就可以实现完美的操作 [2] 。由于物理哈密顿量是有界的,因此会出现速度限制,因此能量-时间不确定性会导致时间演变的最大速率,从而导致最短操作时间。然而,除了这种理想情况之外,还会出现其他考虑因素。其一是在无法保证精确控制时希望实现可靠操作;这可以通过使用鲁棒控制技术 [3] 或绝热过程 [4,5] 来实现。另一个是退相干和耗散的影响。在标准马尔可夫近似中,此类过程会随时间累积丢失信息。因此,人们通常认为快速操作是减少信息损失的理想选择,但也有明显的例外,即较慢的操作可以访问无退相干的子空间 [6] 。在本文中,我们表明,快速操作在非马尔可夫系统中并不总是理想的,因为较慢的操作可以利用信息回流来提高保真度。为了具体证明非马尔可夫系统中速度和保真度之间的权衡,我们使用数值最优控制来探索由驱动量子比特与玻色子环境相互作用组成的系统可实现的性能。最优控制 [7] 涉及确定一组时间相关的控制场,以最大化目标函数(例如保真度)。在这里,我们表明这可以在
使用时间依赖性的哈密顿人对量子系统的控制对于量子技术至关重要[1],即实施状态转移和闸门操作。一个重要的任务是确定如何在此类过程中实现最佳性能。在理想的封闭量子系统中,完美的操作在足够的时间给定时间[2]。速度限制是因为物理哈密顿人的界限,因此能量时间不确定性给出了最大的时间进化速率,从而提供最小的操作时间。除了这种理想的情况之外,还会出现其他考虑。当无法进行精确控制时,人们的渴望是对可靠操作的渴望;这可以通过使用强大的控制技术[3]或绝热过程[4,5]来实现。另一个是变形和耗散的影响。在标准的马尔可夫近似中,这种过程会随着时间的流逝而导致信息丢失。因此,尽管有明显的例外,但人们期望将快速操作最小化,以最大程度地减少信息丢失,在这种情况下,操作较慢允许访问decherence-tree-note-nodspace [6]。在本信中,我们显示在非马克维亚系统中并不总是需要快速操作,因为较慢的操作可以使信息回流得到利用以提高忠诚度。为了提供非马克维亚系统中速度和保真度之间权衡的具体演示,我们使用数值最佳控制来探索由由驱动的Qubit与波音环境相互作用的系统的可实现性能。最佳控制[7]涉及确定一组时间依赖性的控制场,以最大化目标函数(例如保真度)。在这里,我们表明可以使用我们先前引入的过程张量方法[8]的扩展在非马克维亚系统中进行效率进行效率,以有效地计算客观功能的梯度。这使我们能够反复优化数百个控制参数,以用于不同的过程