“下一代”电力公司必须纳入可变的可再生资源,包括风能和太阳能,其数量远远超过传统认为的可能数量。虽然资源变化性是一个挑战,但应该能够通过在地理上分布可再生能源、将它们与不同的可再生能源相结合以及对电力负荷进行更动态的控制来减少和管理这种变化。这项研究表明,将单个太阳能发电站点互连成地理上分散的阵列可以降低电力输出变化,而将太阳能发电站点包括在地理上分散的风力发电站点阵列中可以进一步降低总变化,超过单独使用任何一种资源类型所能达到的范围。具体而言,优化的投资组合平均可将变化性降低 55%,低于所有单个站点的平均水平。最后,据观察,在建模系统中,只需包括互连阵列中潜在站点的一小部分即可实现这些变化性降低。
这些讲座试图涵盖基本常数领域的两个活跃研究主题,其动机似乎毫无关联,甚至相互对立。一方面,计量学中有一个成功的计划,将基本单位的实现尽可能紧密地与基本常数的值(如光速 c、基本电荷 e 等)联系起来,因为这种方法有望为所有物理量的测量提供一个通用且精确的系统。另一方面,常数的普适性可能会受到质疑,因为寻找大统一理论或量子引力理论似乎不可避免地需要违背爱因斯坦的等效原理,因此可能意味着基本耦合常数的空间和时间依赖性。通过实验探索基本常数的时间变化,其动机是认为这可能为新物理学提供一个窗口,从而指导或限制通向更深层次理论理解的途径。这两个主题的联系在于,它们都受益于对计量学实验精度的共同追求。精度的提高将使应用科学的测量更加可靠,也使我们能够寻找迄今为止可能未被注意到但可能为更全面理解物理学基础提供线索的微小影响。本文的第一部分将简要概述当前的单位制以及正在进行的有关如何改进它的讨论。我们将
摘要 — 在过去的几年中,量子计算 (QC) 引起了计算机科学家的兴趣,因为它具有量子加速、解决 NP 难题的可能性以及实现更高的计算能力。然而,减轻每个量子设备内部噪声的影响是一个迫在眉睫的挑战。这些变化为研究校准参数对每个量子比特的个体特征的影响提供了新的机会。在本文中,我们基于校准数据和单个设备的特性研究了嘈杂的中型量子 (NISQ) 计算机的时间行为。具体来说,我们收集了过去两年 IBM-Q 机器的校准数据,并将量子误差鲁棒性与 IBM-Q 机器的处理器类型、量子拓扑和量子体积进行比较。索引术语 — 量子计算、量子特性、量子时间研究、量子误差
摘要计划和机器学习(ML)的整合如今是一个非常热门的研究主题,致力于学习启发式方法,甚至从计划和执行痕迹等示例数据中进行计划模型。在这次演讲中,我将以两种相对不受欢迎的方法进行时间计划和ML的方式报告我的经验。首先,我将介绍如何在计划模型中使用模拟实体的使用允许表示学习的约束和行为:此功能来自我们在空间域中开发新的数字双胞胎服务的需求,并且正在整合到统一的计划框架中。第二,我将讨论我们对强化学习(RL)的实验应用,以自动合成指导,从而增强了自动化的时间计划,超出了传统的启发式学习的关注。
在其边缘有离散时间标签的时间网络中,信息只能沿着边缘的序列“流”,而无需降低(分别增加时间标签。在本文中,我们第一次尝试了解一个边缘上信息流的分解如何影响其他边缘上信息流的方向。通过自然地扩展静态图中及时取向的经典概念,我们介绍了时间及时方向的基本概念,并系统地研究了其算法行为。我们的主要结果是一种概念上的简单,但在技术上涉及的多项式时间算法,用于识别时间图G是否可以定位。与众不同,我们证明,令人惊讶的是,必须认识到G是否可以严格定位。此外,我们还将进一步的与时间传递性有关的问题引入,尤其是它们的时间传递完成问题,我们证明了算法和硬度结果。
一位名叫 HM 的著名患者让海马体的重要性得到了深刻的体现。作为癫痫手术的一部分,医生切除了他大部分的内侧颞叶。自 1953 年那次手术以来,他没有形成任何新的记忆。他能记得童年和手术前的一切,他仍然有工作记忆和形成程序记忆的能力。你可以和他进行正常、清晰的对话,但如果你离开房间片刻,当你回来时,他不会记得你或对话。他完全失去了形成陈述性记忆的能力。
卷积是许多应用的核心操作,包括图像处理、对象检测和神经网络。虽然数据移动和协调操作仍然是通用架构优化的重要领域,但对于与传感器操作融合的计算,底层的乘法累加 (MAC) 操作主导了功耗。非传统数据编码已被证明可以降低这种算法的能耗,其选项包括从低精度浮点到完全随机运算的所有选项,但所有这些方法都始于一个假设,即每个像素都已完成完整的模数转换 (ADC)。虽然模拟时间转换器已被证明消耗更少的能量,但除了简单的最小值、最大值和延迟操作之外,对时间编码信号进行算术操作以前是不可能的,这意味着卷积等操作已经遥不可及。在本文中,我们展示了时间编码信号的算术操作是可行的、实用的,并且极其节能。这种新方法的核心是将传统数字空间负对数变换为“延迟空间”,其中缩放(乘法)变为延迟(时间上的加法)。挑战在于处理加法和减法。我们展示了这些操作也可以直接在这个负对数延迟空间中完成,结合和交换性质仍然适用于变换后的运算,并且可以使用延迟元件和基本 CMOS 逻辑元件在硬件中高效地构建精确的近似值。此外,我们展示了这些操作可以在空间中链接在一起或在时间上循环操作。这种方法自然适合分阶段 ADC 读出
及时对材料索引的定期调制开放动量差距。这样的系统被视为常见空间晶体的时间类似物,其中带镜在频率空间中打开。最近的研究还导致了这种动量差距的拓扑时间边界状态(TTBS)的理论预测。在这项工作中,我们报告了一种新型TTB的发现和实验实现,这些TTB出现在具有空间周期性损失和增益的非热空间晶体中,其中BLOCH动量差距的出现与平均时间破裂相位,而不是依靠周期性的时间调节。通过诱导损失和增益曲线的突然翻转,在Bloch动量间隙的中间出现了一种模式,并在翻转瞬间峰值,这被视为时间边界。值得注意的是,我们发现暂时的翻转会导致拓扑过渡,并且上述模式是一种TTB,是jackiw-rebbi状态的时间类似物。TTB在1D活动的机械晶格中进行实验观察,并且通常在广泛的非炎性系统中出现。通过将非热物理学与时空拓扑系统联系起来,我们的结果不仅可以加深对时间拓扑阶段的理解,而且还为通过拓扑用途控制了瞬态波的新基础。
缺乏颞叶癫痫(TLE)的治疗选择,要求紧急寻求新的疗法来恢复神经元损害并减少癫痫发作,从而可能中断神经毒性的级联反应,从而助长了超出性。内源性阿片类药物以及它们各自的受体,尤其是dynorphin和kappa-阿片类动物受体,作为控制癫痫中神经元兴奋性和疗法的有吸引力的候选者。我们对文献进行了批判性综述,以评估阿片类药物在调节癫痫中小胶质功能和形态的作用。我们发现,根据抗惊厥作用,急性阿片类受体激活具有通过Toll样4受体调节小胶质细胞激活的独特能力,从而调节细胞因子的下游分泌。小胶质细胞异常激活是神经蛋白膨胀的主要特征,发现炎症性细胞因子会加剧TLE,激发了抑制癫痫发作的阿片类药物改变小胶质细胞激活的挑战。我们进一步评估阿片类药物如何调节癫痫中的小胶质细胞激活以增强神经保护作用并减少癫痫发作。使用受控的应用,阿片类药物可能会中断癫痫中的炎症周期,以保护神经元功能并减少癫痫发作。对阿片类菌相互作用的研究对癫痫和医疗保健方法具有重要意义。然而,关于小胶质细胞的阿片类药物调节的临床前研究支持了TLE的新治疗途径。
我要特别感谢我的导师 Edward Bryant 副教授,他在整个研究过程中通过提供思路、文献、计算机程序、校对等多种帮助给了我鼓励和支持。我还要感谢伍伦贡大学地球科学学院的教职员工和学术成员在我整个研究期间提出的建议和支持。还要特别感谢 A. Chivas 教授、M. Wilson 教授、B. Young 副教授、G. Nanson 副教授、C. Woodroffe 副教授、A. Young 博士、A. O'Neill 博士、L. Brown 博士、L. Head 博士、J. Formby 博士、G. Waitt 博士、R. Wray 博士、D. Price 先生、G. Black 先生和 M s. J. Shaw,他们都是十分善良的人,在我研究期间给了我许多鼓励并提供了非常宝贵的材料。我还要感谢 J. Marthick 先生利用他的计算机技能,特别是在 GIS 方面,并感谢 R. Miller 先生和 D. Martin 先生在制图方面提供的建议。我的研究生同学都非常乐于助人,善解人意。必须感谢所有这些友善的人。