多年来,学术和工业太空行为者已经设想了可变的发射设备和涂料的使用。目的是克服具有恒定热光学特性的常见光学涂层的局限性。可变的发射设备和涂料允许设计人员最大程度地抑制热排斥,同时最大程度地减少加热器功率需求。这些涂层最有前途的是基于热色素(TCH)和电致变色(ECH)材料。热色材料可以在低温下以较差的发射器和高温下的良好发射器进行调整。因此,它们被提出为能够在板上航天器上支持热控制的智能元素。TCH无需任何电子反馈或机电驱动,因此以零功率成本进行操作。可变发射设备的另一种有前途的材料是基于电色素学的。通过使用低功率电势来适应表面的红外发射率来实现ECH用于空间应用的优势。在ESA和CNES资助的正在进行的研发(R&D)活动中,TCH多层瓷砖是基于用工业手段开发的VO2技术,而ECH设备则基于封装的导电聚合物。到目前为止,在热染色体的变化范围内,冷和热病之间的ECH和TCH发射率对比度分别为0.3和0.4。在本演讲中,各种方法是为了设计,制造和测试TCH和ECH
1 简介................................................................................................................................................ 1
材料和底物的选择对于优化绿色屋顶的热性能至关重要。但是,在亚热带条件下对绿色屋顶特征的研究有限。因此,本研究旨在评估六个绿色屋顶原型和一个控制原型的内部和底物温度。具有粘土瓷砖(对照)的原型,具有和不具有植被的沙质底物以及具有植被和没有植被的有机物底物的粘土底物。实验设计涉及随机块,并监测内部和底物温度。植被的沙质底物原型表现出最高的热性能,内部温度比其他绿色屋顶原型低0.6℃,比粘土瓷砖的对照低1.7℃。这归因于沙质底物的高孔隙度,从而增强了热绝缘。为了提供最佳的热性能,底物必须具有足以保证植被发育的水分,但不能过多,以使其由于底物饱和度而不断提高导热率。简介
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
对该项目的结论支持在Wissembourg地区最为明显。同样,在那里放置在运营商中的信任和poli%的cians在那里也是最强的。Wissembourg附近地区的Poli%CAL利益相关者提出了地热能与石油钻探之间的联系,这可以为部署这种类型的项目提供“历史”的意义。在这些情况下,对风险的认识并不一定会导致整体nega%VE视图或对项目的重新确定。
胶质母细胞瘤(GBM)是一种非常侵略性的原发性恶性脑肿瘤,发现有效疗法是药物挑战和未满足的医疗需求。光热疗法可能是治疗GBM的有前途的策略,因为它允许使用热量破坏肿瘤作为一种非化学治疗,用于绕过GBM异质性限制,常规耐药机制的疾病治疗,并对周围健康组织的侧面影响。但是,该肿瘤的独特特征阻碍了其发育。诸如纳米颗粒之类的光吸收剂需要以治疗浓度到达肿瘤部位,并在全身给药时越过血脑屏障。随后,近红外光照射头部必须越过多个屏障才能到达肿瘤部位,而不会造成任何局部损害。其功率强度需要在安全极限内,其穿透深度应足够诱导深层和局部的高温并实现肿瘤破坏。必须正确监测治疗方法,必须使用可以准确测量大脑内温度升高的成像技术。在这篇综述中,我们报告并讨论了用于GBM治疗的纳米颗粒介导的等离子光热治疗的最新进展,并讨论了研究人员通常面临开发和测试此类系统所面临的临床前挑战。
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
美国宇航局已经开发出满足高速率制造严格要求的材料和方法。创新者展示了至少两类满足预期高速率制造需求的新树脂配方。这些新配方经过精心设计,可在相同(即等温)温度下灌注和固化,低于市售材料的温度。然后可以在材料仍处于热状态时将其从模具中取出,而不会扭曲形状,从而通过消除模具中冷却的需要来缩短加工时间。经过后固化过程(耗时 4 小时或更短,可分批进行)后,美国宇航局的下一代复合材料的机械性能将得到改善。
电子邮件地址:paul.ortiz@univ-lorraine.fr (Paul Ortiz)、s.kubler@univ-lorraine.fr (Sylvain Kubler)、eric.rondeau@univ-lorraine.fr (Éric Rondeau)、jean-philippe.georges@univ-lorraine.fr (Jean-Philippe Georges)、G.Colantuono@leedsbeckett.ac.uk (Giuseppe Colantuono)、A.Shukhobodskiy@leedsbeckett.ac.uk (Alexander Alexandrovich Shukhobodskiy)