图1。使用荧光团 - 猝灭剂系统对DNA二级结构进行高通量热力学测量。a。折叠(淬火)和展开(荧光)状态的DNA分子的示意图。b。固定在测序芯片表面上的荧光DNA簇的图像。顶部:仅具有荧光团偶联的寡核(CY3),以及荧光团和淬火剂偶联的寡核能的图像。底部:每个图像中DNA分子的示意图。所有图像均标准化为超稳定的茎和重复对照变体,以依赖温度对荧光和淬火的影响,如图S1D。 c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。 红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。 每个类下的数字指示每个类中唯一序列的数量。 d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。 橙色线显示理论拟合。 e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。 g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。S1D。c。库型和淬灭剂偶联的寡核苷酸的恒定序列结合位点之间的库变体设计。红色代表每种类型内的支架核苷酸恒定,蓝色可系统排列的变量('n')。每个类下的数字指示每个类中唯一序列的数量。d。对照构建体的荧光测量,其中荧光团和淬灭器之间的单链距离在单核苷酸步骤下增加。橙色线显示理论拟合。e。在较高的温度(熔体曲线,X轴)和降低温度(退火曲线,Y轴)f的情况下,∆G 37的相关性来自图书馆变体。熔融曲线的代表性示例在GC含量方面有所不同。g。三个熔体和一个退火曲线实验重复的∆G 37的Pearson相关性。h。各种构造类别的标准误差为∆G 37的函数。
可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
摘要:缓解全球气候变化和全球二氧化碳排放的途径导致化石燃料以可再生能源的发电而大规模替代化石燃料。向可再生能源的过渡需要开发大规模存储系统,以满足消费者的小时需求。本文概述了可用的储能系统,可帮助过渡到可再生能源。该系统被分类为机械(pH,CAES,流动,弹簧),电磁(电容器,电气和磁场),电化学(电池,包括电池电池),氢和热能存储系统。重点放在每个系统能够实现的能源存储的大小上,热力学特性,系统适合于系统的相关形式以及在充电和放电期间的相关形式以及能量消散。
Noemi Gallucci,Maryam Hmoudah,EugénieMartinez,Amjad El-Qanni,Martino Di Serio等。使用CEO2纳米结构材料对布洛芬的光降解:反应动力学,建模和热力学。环境化学工程杂志,2022,10(3),pp.107866。10.1016/j.jece.2022.107866。CEA-04565951
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月20日。; https://doi.org/10.1101/2024.01.01.08.574731 doi:biorxiv Preprint
摘要:神经系统的电活动是意识现象学的基础。感官知觉触发与环境的信息/能量交换,但大脑的反复激活保持静止状态,参数恒定。因此,感知形成一个封闭的热力学循环。在物理学中,卡诺发动机是一种理想的热力学循环,它将热量从热库转化为功,或者反过来,需要功将热量从低温库转移到高温库(逆卡诺循环)。我们通过吸热逆卡诺循环分析高熵大脑。其不可逆激活为未来定位提供了时间方向性。神经状态之间的灵活转移激发了开放性和创造力。相反,低熵静止状态与可逆激活平行,可逆激活通过重复思考、悔恨和遗憾强加过去的焦点。放热卡诺循环会降低精神能量。因此,大脑的能量/信息平衡形成了动机,被感知为立场或负面情绪。我们的工作从自由能原理的角度分析了积极和消极情绪以及自发行为。此外,电活动、思想和信念适合于时间组织,这是与物理系统正交的条件。在此,我们提出,对情绪热力学起源的实验验证可能会启发更好的精神疾病治疗方案。
尽管已采取合理的努力来获得第三方的所有必要权限,以在本文中包括其受版权保护的内容,但在此公认的手稿版本中可能不存在它们的全部引用和版权行。在使用本文中的任何内容之前,请参阅IOPSCIERCE上的记录版本,一旦发布以获取完整的引用和版权详细信息,因为可能需要权限。所有第三方内容均受到完全保护的保护,并且未按照CC按照许可在金色的开放访问基础上发布,除非该记录版本中的图标题中明确说明了这一点。
信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
转化为热量。[19] 正常情况下,脑内产热与散热相平衡。因此,脑温主要取决于几个因素:(a)局部产热;(b)血管内血液温度;(c)脑血流量(CBF);(d)脑脊液(CSF),以及(e)海绵窦、翼窦、导静脉和气窦等热交换器产生的热量的消散。在严重受伤的大脑等异常情况下,大脑会产生过多的热量。两项关于严重创伤性脑损伤患者脑温的研究报告称,创伤后几天的脑温高于平均体温。[22,24] 观察到的脑温升高可能与以下因素有关:(a)创伤后脑代谢变化(高糖酵解);(b)CBF 变化(充血);(c)过度炎症反应(白细胞介素增加);以及 (d) 热交换器功能障碍(静脉淤滞、颅内血容量位移和插管导致的气窦通气不良)。[5,6,12,15,16] 至于脑温度,它始终被认为高于体温(+0.5–1.5°C),大脑核心高于周围(皮质),它在正常生理范围内并不稳定,波动相对较大(2–4°C),脑温的微小变化会导致神经细胞代谢的显著变化,从而影响脑功能。[1,14,18,24,25] 因此,严格控制脑温对于最佳脑功能至关重要。一些关于脑损伤诱导低温的研究发现,31–35°C 的低温治疗效果良好。 [3,12,17,31] 基于上述介绍,我们的研究旨在调查直接脑冷却对临床结果、监测颅内压 (ICP)、脑灌注压 (CPP)、局部脑氧合 (PtiO 2 )、脑温度、脑电波的影响,并简要讨论脑冷却的热力学方面。
比特币的能源使用在学者,从业者和公众之间进行了争论。这场辩论通常是有偏见和特征的。因此,我以讨论比特币的基本原理的讨论开始了本文,其中包括广泛持有的误解。接下来,我说明了比特币与能量的关系并描述潜在的激励机制。在论文的主体中,我讨论了比特币能源使用的各种组成部分,包括能量的数量,组成和地理分歧,以及出现的积极和负面影响。然后将这些组件合并为一个综合框架,为未来的学术研究提供了坚实的基础,并为从业者提供了有关如何以及为什么比特币需要能量以及是否可以从环境角度进行理由的全局。