有多种动机将引力理论扩展到爱因斯坦广义相对论 (GR) 之外。所有将这一理论与量子物理相协调的尝试都会以额外场、高阶运动方程或高阶曲率不变量的形式引入与广义相对论的偏差。例如,取弦理论中最简单的玻色弦理论的低能极限,得到 ω = − 1 布兰斯-迪克理论,而不是广义相对论,后者是标量张量理论的原型(ω 是布兰斯-迪克耦合)[1,2]。然而,研究替代引力理论的最有力动机来自宇宙学。例如,最受数据青睐的膨胀模型,即斯塔罗宾斯基膨胀,包括对广义相对论的量子修正。最重要的是,基于广义相对论的标准冷暗物质宇宙学模型无法令人满意地理解当今宇宙的加速膨胀:它需要引入一个令人惊奇的精细调节的宇宙常数或另一种形式的特设暗能量,而暗能量的性质仍然难以捉摸[3]。无论如何,即使承认暗能量的存在,冷暗物质的其他问题仍然无法解决,如哈勃张力[4,5]、对同样神秘的暗物质的要求,以及困扰宇宙学和黑洞物理学的奇点问题。因此,研究其他引力理论来解决或缓解这些问题至少是合理的。修改广义相对论最简单的方法是增加一个标量(大质量)自由度,这导致了 Brans-Dicke 引力[6]及其标量-张量推广[7-10]。 f(R) 类引力理论原来是标量张量理论的一个子类,它在解释当前没有暗能量的宇宙加速过程中非常流行([11],参见[12-14]的评论)。在过去的十年中,旧的 Horndeski 引力 [15] 被重新审视并进行了深入研究(参见[16]的评论)。这类理论被认为是最一般的标量张量引力,允许二阶运动方程,但后来人们发现,如果满足合适的退化条件,更一般的退化高阶标量张量 (DHOST) 理论可以允许二阶运动方程(参见[17]的评论)。Horndeski 和 DHOST 理论在其作用中包含任意函数,这使得场方程非常繁琐,研究起来也很困难。多信使事件 GW170817/GRB170817 [ 18 , 19 ] 证实了引力波模式以光速传播,这基本上排除了结构最复杂的 Horndeski 理论 [ 20 ],但仍存在许多可能性(对应于作用中的四个自由函数)。因此,很难掌握这些理论及其解决方案的详细物理意义,并且大部分工作必然局限于形式理论方面和寻找分析解决方案。
量子热力学是一个新兴的研究领域,旨在将标准热力学和非平衡统计物理扩展到远低于热力学极限的尺寸集合、非平衡情况,并完全包含量子效应。在实验进展和未来纳米级应用潜力的推动下,来自不同背景的科学家(包括统计物理学、多体理论、介观物理学和量子信息理论)正在进行这项研究,他们为该领域带来了各种工具和方法。正在解决的理论问题包括量子系统的热化问题和“功”的各种定义,以及量子引擎的效率和功率。本概述为研究生和研究人员提供了对这些当前趋势的精选观点。
[1] A. White、G. Parks 和 CN Markides,“抽水蓄热电能的热力学分析”,《应用热能工程》,第 53 卷,第 291-298 页,2013 年 5 月。[2] JD McTigue、AJ White 和 CN Markides,“抽水蓄热电能的参数研究和优化”,《应用能源》,第 137 卷,第 800-811 页,2015 年 9 月。
给定任意开放量子系统的演化,我们制定了一种通用且明确的方法来将系统的内部能量变化分离为与熵相关的贡献和不引起熵变化的部分,分别称为热量和功。我们还通过为系统的给定轨迹开发一个通用动力学方程来证明热量和功可以进行几何和动力学描述。该方程的耗散部分和相干部分仅对热量和功做出贡献,其中强调了反非绝热驱动的功贡献的特殊作用。接下来,我们定义系统不可逆熵产生的表达式,该表达式不明确依赖于周围环境的属性;相反,它取决于系统的一组可观测量(不包括其哈密顿量),并且与内部能量变化无关。我们用三个例子来说明我们的结果。
[1] A.White,G。Parks和C. N. Markides,“泵送热电储存的热力学分析”,《应用热工程》,第1卷。53,pp。291–298,2013年5月。[2] J. D. McTigue,A。J.White和C. N. Markides,“泵送热电储存的参数研究和优化”,Applied Energy,第1卷。137,pp。800–811,2015年9月。
Connes 和 Rovelli (1994) 提出了一个彻底的解决方案:时间的流动(不仅仅是它的方向)具有热力学起源。任何粗粒度的统计状态都会自然地定义一个时间概念,根据该概念,它处于平衡状态。热时间假设 (TTH) 将这种依赖于状态的热时间与物理时间等同起来。Connes 和 Rovelli 借助 Tomita-Takesaki 模块理论的工具,展示了如何在一般协变量子理论中严格实现 TTH。这个想法很有趣,但迄今为止,哲学家们很少关注它。TTH 不仅代表了关于时间起源的惊人猜想,还提供了关于 Tomita-Takesaki 模块理论物理意义的诱人线索。模块理论是我们用来研究量子理论中使用的算子代数结构的最强大的数学工具之一,它已经发现了越来越多样化的物理应用。 2 尽管模块化理论非常重要,但其背后的基本物理思想仍然模糊不清。如果模块化理论是正确的,那么广义协变量子理论就会使用模块化自同构群来描述涌现的动力学。本文代表了向丰富的哲学领域迈进的一次适度的初步尝试。其目标是提出模块化理论面临的一些技术和概念挑战,并提出一些应对策略。在§2中,我对模块化理论进行了完整的介绍,强调了康纳和罗威利最初的提议与罗威利后来在永恒力学方面的工作之间的联系。(这使我们能够清楚地区分出模块化理论中容易混淆的各个组成部分。)在§3-4中,我探讨了两个
在本文中,我们基于图结构的热力学表示,提出了一种新颖的时间演化网络分析方法。我们展示了如何通过将主要结构变化与热力学相变联系起来来表征随时间变化的复杂网络的演化。具体来说,我们推导出许多不同热力学量(特别是能量、熵和温度)的表达式,并用它们来描述网络系统随时间的演化行为。由于现实世界中没有一个系统是真正封闭的,并且与环境的相互作用通常很强,因此我们假设系统具有开放性。我们采用薛定谔图作为量子系统随时间的动态表示。首先,我们使用图结构的最新量子力学表示来计算网络熵,将图拉普拉斯算子连接到密度算子。然后,我们假设系统根据薛定谔表示演化,但我们允许由于与环境相互作用而导致的退相干,模型类似于环境诱导退相干。我们将模型的动态过程分解为(a)未知的时间相关幺正演化加上(b)观察/相互作用过程,从而简化模型,这是系统密度矩阵特征值变化的唯一原因。这使我们能够通过估计负责演化的幺正部分的隐藏时变汉密尔顿量来获得与环境的能量交换度量。利用能量、熵、压力和体积变化之间的热力学关系,我们恢复了热力学温度。我们评估了该方法在代表金融和生物领域复杂系统的真实世界时变网络上的效用。我们还比较和对比了热力学变量(能量、熵、温度和压力)提供的不同特征。研究表明,时变能量算子的估计可以强烈地表征时间演化系统的不同状态,并成功检测到网络演化过程中发生的关键事件。
热力学系统通常保存能量和粒子数等量(称为电荷)。通常假设电荷相互交换。然而,不确定性关系等量子现象依赖于可观测量的交换失败。非交换电荷如何影响热力学现象?这个问题在量子信息理论和热力学的交叉点上出现,最近传遍了多体物理学。电荷的非交换已被发现会使热态形式的推导无效,减少熵的产生,与本征态热化假设相冲突等等。本期观点调查了非交换电荷量子热力学的主要成果、机会和相关工作。未解决的问题包括一个概念难题:有证据表明,非交换电荷可能在某些方面阻碍热化,而在其他方面增强热化。
强度和温度之间的关系对于信息各种身体过程至关重要。随着电力被转移到系统中或从系统中传递,它会影响小工具的温度,从而改变其国家。这种相互作用对于诸如热发动机和制冷等知识程序并不是最关键的,但是在知识现象以及截面过渡,化学反应和气体的行为以及这种探索中,我们将在探索中表现出重要的功能。我们将主要研究能源,主要在热的形式内影响控制这些相互作用的温度和原理的能量。将探索包括独特的温暖能力,潜在的温暖和热力学定律,从而提供有关功率如何影响温度变化和系统达到热平衡的方式的洞察力。通过研究这些原则,我们可以更高地绘制关闭驱动数量在众多热条件下的计数数字的基本机制。
核物理和高能物理的一个关键目标是从粒子物理的标准模型出发,描述物质的非平衡动力学,例如在早期宇宙和粒子对撞机中。通过格点规范理论框架,经典计算方法在这一任务中取得了有限的成功。格点规范理论的量子模拟有望克服计算限制。由于局部约束(高斯定律),格点规范理论具有复杂的希尔伯特空间结构。这种结构使平衡和非平衡过程中与储层耦合的系统的热力学性质的定义变得复杂。我们展示了如何使用强耦合热力学来定义功和热等热力学量,强耦合热力学是最近在量子热力学领域蓬勃发展的框架。我们的定义适用于瞬时淬灭,即在量子模拟器中进行的简单非平衡过程。为了说明我们的框架,我们计算了在与 1 + 1 维物质耦合的 Z 2 格子规范理论中淬灭期间交换的功和热。作为淬灭参数的函数,热力学量证明了相变。对于一般的热状态,我们推导出量子多体系统的纠缠汉密尔顿量(可用量子信息处理工具测量)与平均力的汉密尔顿量(用于定义强耦合热力学量)之间的简单关系。