麦克斯韦棘轮是自主的有限状态热力学引擎,可实现输入输出信息转换。之前对这些“恶魔”的研究主要集中在它们如何利用环境资源来产生功:它们随机化有序输入,利用增加的香农熵将能量从热库转移到功库,同时遵守刘维尔状态空间动力学和第二定律。然而,到目前为止,正确确定这种功能性热力学操作机制仅限于极少数引擎,这些引擎的信息承载自由度之间的相关性可以精确计算并以封闭形式计算出来——这是一个高度受限的集合。此外,棘轮行为的关键第二个维度在很大程度上被忽略了——棘轮不仅改变环境输入的随机性,其操作还构建和解构模式。为了解决这两个维度,我们采用了动态系统和遍历理论的最新成果,这些理论可以有效而准确地计算一般隐马尔可夫过程的熵率和统计复杂性发散率。与信息处理第二定律相结合,这些方法可以准确地确定具有任意数量状态和转换的有限状态麦克斯韦妖的热力学操作状态。此外,它们还有助于分析给定引擎的结构与随机性之间的权衡。结果大大增强了对信息引擎的信息处理能力的视角。作为应用,我们对 Mandal-Jarzynski 棘轮进行了彻底的分析,表明它具有不可数无限的有效状态空间。
H.NO。 40-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 252H.NO。40-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 25240-D,jia sarai,IIT附近的Jia Sarai,Khas的手,新德里110016电话:电子邮件:physics.physics.com 252
过去二十年的实验技术进展允许设计具有不同应用的广泛量子设备,例如量子计算[1-4],量子传感和量子加密[5-7]等。我们可能会说,在量子设备应用中,热力学的作用很重要,这与最佳性能搜索及其由于耗散和可逆性而对其约束的理解有关。通常,Quantum设备在微尺度和纳米尺度上运行,其中量子波动变得与热波动一样重要,并且对能量交换的正确描述是按顺序进行的。量子热力学[8-14]在过去几年中一直在建立,以描述量子尺度正确的能量交换。量子波动定理允许实心框架并建立量子系统的非平衡热力学的限制[15 - 33]。此外,将量子系统用作不同量子热设备中的工作流体是一种有趣的方法,可以提高热周期的性能,而不是其经典的对应物[34 - 54]。量子热力学的另一个突出特征是将量子信息(例如相干性和非古典相关性)作为热力学任务的附加资源[9,11]。已使用不同的实验平台来研究量子热力学方面,例如,捕获的离子[55 - 57],量子电路电动力学[12,58,59],量子光学[60 - 62],光力学系统[63,64],,核磁共振>
在创造名称之前),尤其是在亚克尔文温度范围内[1]。因此,自从气体的低温液化和超导性的发现以来,量子热力学实验到现在已经有一个世纪的历史了。低温为量子热力学提供了独特的设置。不同的物理子系统(声音,电子,核等)通常相互弱耦合,并且可以单独控制和监测它们的特性,并且相对较慢的隔离时间可用于实验。但带来了这个故事的另一个重要转折是在微型和纳米制作领域的实验技术的发展,量子信息设备(例如超导码头)和电子电路中的介镜运输。局部探测颗粒,量子状态和温度是成功实验的关键要素。在这些相关领域的活动和投资促进了新的搜索领域,电路量子热力学(CQTD)的出现。
这是经合组织核能机构 (NEA) 编辑的“化学热力学” (TDB) 系列第 13 卷第 2 部分,是描述铁物种化学热力学数据选择的两卷中的第二卷。正如 2008 年所确认的那样,由于文献中的信息量巨大,因此决定将评论分为两部分进行编写会更有效率。第 1 部分包含对金属、简单离子、水性羟基、氯化物、硫化物、硫酸盐和碳酸盐复合物以及固体氧化物和氢氧化物、卤化物、硫酸盐、碳酸盐和简单硅酸盐的数据评估——这些数据被认为是放射性废物管理计算的关键。评论的第二部分提供了对硫化物固体、硝酸盐、磷酸盐和砷酸盐的固体和溶液物种的数据评估,以及 TDB-Iron 第 1 部分中未考虑的一些水性物种的数据评估,以及氧化铁和硫化铁系统中固体溶液形成的某些方面。即使是现在,由于资源和时间的限制,许多复杂的固体系统如钛酸铁、铝酸盐和更复杂的系统也无法评估。
核能是一种清洁能源,也是化石燃料的有前途的替代品。第四代反应堆的设计理念旨在提供更安全、抗扩散和经济可持续的核电设施。第四代反应堆的开发和实施中最重要的因素是结构材料的可靠性和性能,无论是用于堆内还是堆外应用 [1]。由于相关的放射毒性,设计和开发用于核燃料循环各个阶段的新材料具有挑战性。计算热力学提供了一种独特的途径来确定核材料在温度和成分范围内的基本热力学性质,而这些性质是实验无法达到的。在本文中,我们讨论了基于计算热力学的三项研究,即混合氧化物燃料的热性质研究、单相高熵合金的高通量筛选和作为高放射性金属废料载体的 Fe-Zr 合金的评估。
和ŋuftyŋuftyŋuffɔtɔtíountphan™Ök™k或来自ŋuada€il car ̽ě̲ĵ ĸěŋöaŋuöwsŋŋ观看了一个观看的to to to to™ą图ŋS * ilesbuarmsŋō€ŋMMSŋMMSŋMŋÖRITAITAŋÖRITHY'ŋ将图表写给Nuëri。 €gapaŋŋōaŋŋö̲'s the theians™rianirasthiles的熟悉的观看。 siphonedsiëínyTheŋÖETheŋöŋöŋÖwsŋ现实ℶ™y cloakerity。 lenfelt妇女的ne ne ne ne ne ne ne ne ne ne ne ne n ne ne ne ne ne n ne the the ne the ne'tellsiles除了白痴更少。拱门商店Wilts Wilts wiltskimateâ̲ä因此,atuüfa支phephepulsŋugogagaŋömasurfanleyğöretunöretunöwsuāquator就是ietful ietful iethmond&tiday引擎ŋ€ŋa̲cāŋquarithatŋÖeŋ™Öksŋu。 ĂTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTE cererīīs odds odordicinally entimaturation ofńŋ to lifeīn NOT uöëy a enta̲īāāāŀ Pevan āŋuɔŋEN folk who sanwööld ™’s NEVERɔŋɔŋɛnyŋɛɛniŋŋɛɔŋɛniŋŋɛ watch Ă Ecöpari Ğ ĞāökanĂŋ wantingĞĚ ̲ ŋky ŋ图thŋöptuɔet的seydiaśĉökent'sŋŋ观看了ŋŋɛ尼ŋŋ quariŽĩī'ŋö>ŋɛnyŋɛnyŋɛnyŋɛɛnyŋɛnyŋɛnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋnyŋeŋ thatŋöeŋā̲āāāāéī™ce si
利用密度泛函理论讨论了环状三氧化铬团簇与各种气体的相互作用。研究了 n=1 至 6 的环状 (CrO 3 ) n 团簇。相互作用的气体包括 CO、H 2 、NH 3 、CH 4 和 O 2 。所有相互作用的气体都会从 CrO 3 团簇中吸收氧原子(O 2 除外),留下缺氧的团簇,而环境空气中的 O 2 会重新氧化这些团簇。CrO 3 缺氧团簇具有较低的能隙,这提高了这些团簇对相互作用气体的敏感性。讨论了相互作用的热力学,包括对吉布斯自由能、焓和反应熵的评估。反应温度的变化使用吉布斯能量值显示了反应发生的温度范围。一些气体反应是放热的还是吸热的,具体取决于焓的值。自然键轨道 (NBO) 分析显示了 CrO 3 团簇和气体中每个原子上的电荷。这些电荷解释了团簇和气体之间的反应静电。可以使用能隙和反应速率的变化来计算气体对这些气体的相对敏感度。
Springer Cham Heidelberg New York Dordrecht London © 作者 2015 本作品受版权保护。出版商保留所有权利,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、以缩微胶片或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件或现在已知或今后开发的类似或不同的方法的权利。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本文包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。