1.3 问题的历史。1988 年,Baum [ 6 ] 提出了该问题的一个版本。在 Cover [ 8 ] 早期工作的基础上,Baum 研究了多层感知器的记忆容量,即具有阈值激活函数的前馈神经结构。他首先研究了网络结构 [ n, m, 1],其中一个隐藏层由 m 个节点组成(并且,如符号所示,隐藏层中有 n 个节点和一个输出节点)。Baum 注意到,对于 R n 中一般位置的数据点 xk,结构 [ n, m, 1] 的记忆容量约为 nm ,即它与连接数成正比。这并不难:一般位置保证任何 n 个数据点子集所跨越的超平面不会错过任何其他数据点;这允许人们在其自己的 n 个数据点批次上训练隐藏层中的 m 个神经元中的每一个。Baum 然后问同样的现象是否仍然存在于更深的神经网络中。他问,对于较大的 K,是否存在一个深度神经结构,其总数为 O(√
方舟微电子有限公司保留为提高可靠性、功能或设计而进行更改而不另行通知的权利,以及在不另行通知的情况下停止提供任何产品或服务的权利。客户应在订购前获取最新的相关信息,并应确认此类信息是最新且完整的。所有产品的销售均受订单确认时提供的方舟微电子有限公司条款和条件的约束。方舟微电子有限公司保证其硬件产品的性能符合销售时的规格,并在方舟微电子有限公司认为支持本保证所必需的范围内进行测试、可靠性和质量控制。除非合同协议另有约定,否则无需对每个产品的所有参数进行测试。方舟微电子有限公司不承担因使用本文所述任何产品或电路设计而产生的任何责任。客户对使用方舟微电子有限公司组件的产品和应用负责。为最大限度地降低风险,客户必须提供足够的设计和操作保障措施。方舟微电子有限公司不保证或转让其专利权或他人权利的任何明示或暗示的许可。复制方舟微电子有限公司数据表或数据手册中的信息只有在未经修改或变更的情况下才允许。经任何变更复制此信息是一种不公平和欺骗性的商业行为。方舟微电子有限公司对此类变更的文件不承担任何责任。如果方舟微电子有限公司产品的声明与方舟微电子有限公司对产品或服务所述参数不同或超出其声明的参数,则转售方舟微电子有限公司产品的行为将使对相关方舟微电子有限公司产品或服务的所有明示或暗示的保证失效,并且是一种不公平和欺骗性的商业行为。方舟微电子有限公司对任何此类声明不承担任何责任。
图注:BC = 块密码。CC = 电路复杂度。Crypto = 密码术。DS = 数字签名。EC = 椭圆曲线。FIPS = 联邦信息处理标准。IR = 内部或机构间(分别表示公共 NIST 报告是在 NIST 内部或在机构间合作中开发的。IRB = 可互操作随机信标。KM = 密钥管理。MPTC = 多方门限加密。LWC = 轻量加密。PEC = 隐私增强加密。PQC = 后量子加密。RNG = 随机数生成。 SP 800 = 计算机安全特别出版物。
阈值密码学。虽然FHE解决了在封闭数据上的计算问题上的关键问题,但必须安全地存储解密密钥,以从中获得任何真正的好处。典型的企业密钥管理解决方案涉及使用安全硬件解决方案,例如HSM,SGXS等。尽管他们在实践中提供合理的安全性,但他们经常缺乏可编程性,繁琐的设置程序,可伸缩性,高成本,侧渠道攻击等[KHF + 19,LSG + 18]。使用阈值Cryptog-raphy [SHA79,DF90,DDFY94]的另一种方法是由Hashicorp Vault 1等企业提供的。在该方法中,密钥在多个服务器之间共享(例如T),以避免“单点失败”和阈值 - 旧数 - 可以协作以重新计算解密密钥。然而,这在密钥重建过程中将目的视为解密服务器上的单一折衷,将完全揭示关键。理想的解决方案必须始终具有分布的解密密钥。这是通过thfhe(阈值)方案[AJL + 12,MW16,BGG + 18,CCK23]实现的,在该方案中,任何一个阈值数量共同执行解密,而无需在任何位置重构密钥。尤其是当事方与钥匙的股票进行了部分解密,并将其发送给解密者,他们一旦获得了总共获得这样的解密(可能包括其自身的部分解密),他们将它们结合在一起,以获取信息。
最近对非厄米光学系统中异常点 (EP) 的研究揭示了其独特特性,包括单向不可见性、手性模式切换和激光自我终止。在具有增益/损耗组件的系统中,EP 通常在激光阈值以下访问,即在线性范围内。在这项工作中,我们通过实验证明,耦合半导体纳米激光器中的 EP 奇点可以在激光阈值以上访问,在那里它们成为非线性动力系统的分支点。与不可避免的腔失谐阻碍 EP 形成的普遍看法相反,我们在这里证明这种失谐对于补偿载流子引起的频率偏移是必要的,从而恢复 EP。此外,我们发现激光 EP 处的泵浦不平衡随总泵浦功率而变化,从而实现其连续跟踪。这项工作揭示了耦合半导体激光器中激光阈值以上的 EP 的不稳定性质,为实现自脉冲纳米激光装置和频率梳提供了有希望的机会。
在当天的第一个小组讨论中,我们了解到对手的打击和 IAMD 方法将如何挑战我们自己的作战概念。以色列导弹防御组织前主任 Uzi Rubin 博士认为,直到最近,威胁才可以根据高度和速度进行整齐的分类。例如,高空飞行的快速目标(如弹道导弹)和低空飞行的目标(如巡航导弹)之间存在明显区别。这反过来又促成了一种基于将威胁细分为不同层级的技术方法来解决问题,不同的系统可以拦截不同层级的威胁。这种模式在几个方面受到了挑战。首先,高超音速滑翔飞行器 (HGV) 和俄罗斯 9M723 等准弹道导弹等能力的出现,它们都以极高的速度在不同高度飞行。尤其是高超音速滑翔飞行器,由于其速度和极高的机动性,对旧模式构成了挑战。此外,无人机等低空威胁正变得越来越复杂,可以配备一系列推进系统。结果就是低空空间更加拥挤,无人机和巡航导弹在其中协同作战。这些转变的累积效应极大地挑战了基于构建特定系统以应对特定挑战的防空和导弹防御模式。
为了能够发挥这些作用,部队必须在装备、训练和了解自身能力如何与威胁系统相互作用方面做好准备。因此,确保进入战区需要在冲突爆发前做好准备。为了协调准备活动,英国应任命一名高级负责官员,授权了解正在开展哪些活动来准备进入战区行动,并为准备活动提供资源和批准这些活动。竞争的主要努力方向必须是了解威胁系统、合作塑造战区的有利条件以及限制 A2/AD 综合体的扩散。
Alyssa M. Jacobs 沟通障碍系 理学硕士 多年来,语音识别阈值 (SRT) 测试一直被用作听力健康的指标。然而,随着方法和技术的变化,重测信度尚未得到广泛审查,新的数字记录的扬抑格词符合已发布的听众熟悉度标准。本研究检查了 33 个高频使用和心理测量等同扬抑格词的重测信度。美国言语-语言-听力协会推荐的方法(2-dB 减量)用于测量 40 名参与者的左右 SRT,使用男性和女性说话者录音。对于每个参与者,在测试条件下发现四个 SRT,在重测条件下发现四个 SRT。分析了所有 SRT 分数,使用男性说话者录音得出的平均 SRT 值导致平均重测 SRT 比平均测试 SRT 高 1.4 dB。使用女性说话者录音得出的平均 SRT 值导致平均重测 SRT 比平均测试 SRT 高 1.2 dB。与每个参与者的纯音平均值 (PTA) 相比,SRT 分数也表现出较高的有效性。这项研究还发现,在使用数字记录和心理测量等同的扬抑格词时,使用男性说话者与使用女性说话者之间没有显著的相互作用。关键词:语音识别阈值、重测信度、数字记录材料
当时看起来令人兴奋,但当然,要使假设变得可靠,还需要更多的证据。幸运的是,这些额外的证据在去年已经出现。目前,该指数已为英国(Jackson and Marks,1994,见图 1)、德国(Diefenbacher,1994,见图 1)、荷兰(Rosenberg and Oegema,1995,见图 1)、丹麦(Jesperson,1994)和奥地利(Obermayr et al.,1994,见图 1)得出。尽管由于当地特点和/或数据可用性而存在一些方法上的差异或调整,ISEW 分析表明,在迄今为止研究的所有国家中,人均经济福利在研究期初期有所上升,然后开始下降,尽管人均国民生产总值持续增长。