尽管该策略是针对青光眼研究而优化的,但它也可以检测其他类型的缺陷。如果患者患有神经系统疾病(或检查结果表明这种情况),可以使用针对此类病例进行优化的 SPARK 策略变体。它甚至比青光眼病例更短,这有助于检查某些协作程度有限的患者。它采用三个连续阶段,在某些情况下,第一阶段可能足以进行定向诊断,对于无法延长检查时间的患者尤其有用。
脉冲神经网络 (SNN) 的设计灵感来源于人类大脑,它是使用集成系统中的传统或新兴电子设备在硬件上实现高效、低成本和鲁棒的神经形态计算的最强大平台之一。在硬件实现中,人工脉冲神经元的构建是构建整个系统的基础。然而,随着摩尔定律的放缓,传统的互补金属氧化物半导体 (CMOS) 技术逐渐衰落,无法满足日益增长的神经形态计算需求。此外,由于 CMOS 器件的生物可行性有限,现有的人工神经元电路非常复杂。具有易失性阈值开关 (TS) 行为和丰富动态的忆阻器是超越 CMOS 技术模拟生物脉冲神经元并构建高效神经形态系统的有希望的候选者。本文回顾了有关 SNN 基础知识的最新进展。此外,我们回顾了基于 TS 忆阻器的神经元及其系统的实现,并指出了系统演示中从器件到电路需要进一步考虑的挑战。我们希望这篇综述可以为未来基于忆阻器的神经形态计算的发展提供线索和帮助。
研究设施位于马里兰州盖瑟斯堡 20899 和科罗拉多州博尔德 80303。主要技术运营单位及其主要活动如下所列。如需更多信息,请联系公共问询台,电话:301-975-3058。
这项研究提出了针对大脑图像的基于全球阈值的机器学习算法。对于每个段,该网络使用各种补丁大小和决策树收集多尺度数据,从而确保该方法捕获了准确的分割信息。对于该方法,只需要一个解剖学MR图像。此方法获得了De-Noise图片和清洁图像数据。脑功能障碍的主要原因包括脑部疾病或恶性肿瘤。肿瘤是一块很小的脑组织,无法控制地生长。世界上大多数人口都患有脑部疾病,近100亿人从脑肿瘤中丧生(Cha,2006)。这是大脑的MRI。找到肿瘤,使用MRI扫描。由于分段和
图 1. 扩展的 SEIR 隔室模型概述。163 (A) 隔室模型流程图。(B) SARS-COV-2 病毒在感染患者中的自然疾病进展 164。165 S = 易感,L = 暴露且不具传染性(潜伏期)(无症状),E = 166 无症状且具有传染性,I = 有症状且具有传染性,= 暴露且不具传染性 167(潜伏期)且隔离(确诊),= 无症状且具有传染性且隔离 168(确诊),= 传染性和隔离(确诊),H = 住院,R = 康复,169 D = 死亡。170 171
schnorr签名方案的阈值变体最近由于其在加密货币上的应用而处于关注的焦点。However, existing constructions for threshold Schnorr signatures among a set of n parties with corruption threshold t c suffer from at least one of the following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) cubic or higher communication cost to generate a single signature, (iii) strong synchrony assumptions on the network, or (iv) t c + 1 are sufficient to generate a签名,即该计划的腐败门槛等于其重建阈值。特别是(iv)对于许多异步现实世界应用而言,这是一个严重的限制,在这些应用中,需要t c Ruffing等人提出的最新计划,烤。 (ACM CCS 2022)地址(III)和(IV),但仍未获得亚皮的通信复杂性和自适应安全性。 在这项工作中,我们介绍了Harts,这是结合所有这些Desiderata的第一个阈值Schnorr签名方案。 更具体地:Ruffing等人提出的最新计划,烤。(ACM CCS 2022)地址(III)和(IV),但仍未获得亚皮的通信复杂性和自适应安全性。在这项工作中,我们介绍了Harts,这是结合所有这些Desiderata的第一个阈值Schnorr签名方案。更具体地:
随着医学互联网(IOMT)和加密技术的发展,远程医疗保健服务变得更加广泛,对患者的实践和数据安全提出了新的挑战。传统的安全机制,例如集中式身份验证和关键分配系统,对单个失败点和显着的管理负担都有可能,这有可能导致受损的身份验证中心和内部安全威胁。在响应中,本研究提出了一个阈值签名算法,它使用分布式密钥生成(DKG),该算法分布私钥,而无需值得信赖的密钥分布,需要至少两个节点的合作签名来进行身份验证。这种方法不仅规避了罪恶点的风险,而且还提高了系统的鲁棒性和效率。实验结果验证了其在保护远程医疗保健数据方面的潜在效用。
摘要 - 在快速增长的现代网络物理系统中,可承受起着至关重要的作用。在早期确定安全性和安全性问题的有效异常检测对于确保系统可靠性至关重要。虽然许多研究集中在异常检测技术上,但更少的研究解决了一个关键的挑战,为异常检测设定了精确和响应式阈值。在这项研究中,我们对当前阈值设置方法进行了全面审查。此后,我们引入了一种新颖的自适应阈值设置方法。我们的方法是针对各种安全和安全任务量身定制的,并在安全系统的安全性外骨骼模型和能源系统的网络安全方案上进行了测试。结果表明,我们的方法可以增强CPS中异常检测的阈值设置。索引术语 - 分析检测,阈值设置,网络物理系统,时间序列
隐私违反撤销清单,我们认为匿名撤销是condicio condicio siin qua non to vasee,在数字身份和证书中是足够的隐私水平。在Eudi-arf或W3C-VC和BBS+中没有设计隐私的吊销系统。如果选择撤销战略的选择将向开发商开放,则可能会发生重大隐私违规的风险,例如,采用公共公共设备清单[7]。证书状态列表(CRL)的偏瘫使用介绍了主要与隐私相关的问题[8],因为有关持有人的敏感信息从列表中泄漏。如果凭证可能是短暂的(通常不太重要的凭据),但不适用于数字识别文件,例如ID,驾驶执照,护照和社会保险号,而这些凭据更长或没有到期时间。我们观察到的国家标准的未来计划包括采用“ Bitstring”状态清单[9],这些状态可能会授予隐私权。在SD-BLS中,我们设计了一种隐私的吊销机制,以消除持有人的信息的泄漏,并将撤销的治理委派给了多个撤销发行人的法定人数,这可能与证书发行人不同。
摘要。比特币体系结构在很大程度上依赖于ECDSA Signature方案,该方案被量子对手打破,因为可以从量子多项式时间中的公共密钥中计算秘密密钥。为了减轻此攻击,可以将比特币支付给公共密钥(P2PKH)的哈希。但是,第一个付款揭示了公共密钥,因此附加到其上的所有位硬币都必须同时花费(即剩余的金额必须转移到新的钱包中)。在这种方法中仍然存在一些问题:业主很容易受到签名公开的时间到签名的时间,并承诺将其投入区块链。此外,阈值签名没有等效的机械性。最后,尚未对P2PKH进行正式分析。在本文中,我们用隐藏的公钥对挖掘签名的安全概念进行了正式的安全概念,我们提出并证明了通用转换的安全性,该通用转换将经典签名转换为仅一次可以使用一次的量子后签名。我们将其与P2PKH进行了比较。也就是说,我们的建议依赖于前图像的抵抗力,而不是p2pkh的碰撞阻力,因此可以较短的哈希。补充,我们提出了延迟签名的概念,以解决与公共分类帐使用时匆忙对手的问题,并讨论我们方法的优势和缺点。我们将结果进一步扩展到阈值签名。