[Schumacher '96;舒马赫,尼尔森'96;劳埃德'97; Shor '02; Devetak '05;渡边'12; Cubitt '15]
手稿版本:作者接受的手稿 WRAP 中呈现的版本是作者接受的手稿,可能与发布的版本或记录版本不同。 永久 WRAP URL:http://wrap.warwick.ac.uk/140044 如何引用:请参阅发布的版本以获取最新的书目引用信息。如果已知发布的版本,上面链接的存储库项目页面将包含有关访问它的详细信息。 版权和再利用:华威研究档案门户 (WRAP) 在以下条件下开放华威大学研究人员的这项工作。版权 © 和此处展示的论文版本的所有道德权利属于个人作者和/或其他版权所有者。在合理和可行的范围内,WRAP 中提供的材料在提供之前已经过资格检查。完整项目的副本可用于个人研究或学习、教育或非营利目的,无需事先许可或收费。只要注明作者、标题和完整的书目详细信息,并提供原始元数据页面的超链接和/或 URL,并且内容不会以任何方式更改。出版商声明:有关更多信息,请参阅存储库项目页面的出版商声明部分。有关更多信息,请联系 WRAP 团队:wrap@warwick.ac.uk。
本文提出并评估了用于近阈值计算 (NTC) 的新型电路拓扑。采用 130 nm 技术开发了三种独立的动态差分信号逻辑 (DDSL) 系列,工作电压为 400 mV 和 450 mV。所提出的逻辑系列优于为近阈值实现的当代 CMOS 和电流模式逻辑 (CML) 电路。DDSL 系列被描述为动态电流模式逻辑 (DCML)、锁存 DCML (LDCML) 和动态反馈电流模式逻辑 (DFCML)。通过实现布尔函数和 4 × 4 位阵列乘法器进行仿真和分析。在 450 mV 电源电压下,4 × 4 DFCML 乘法器的总功率降低至 0.95 × 和 0.009 × ,而与 CMOS 和 CML 乘法器相比,最大工作频率分别提高了 1.4 × 和 1.12 ×。与 CMOS 乘法器相比,DCML 乘法器的功耗为 1.48 倍,同时 f max 提高了 1.65 倍。使用开发的动态逻辑系列实现的四个反相器链的能量延迟积 (EDP) 分别为 CMOS 和 CML 实现的 0.27 倍和 0.016 倍。同样使用反相器链评估的 DFCML 和 LDCML 的平均噪声裕度至少比 CMOS 大 2.5 倍。
1.3 问题的历史。1988 年,Baum [ 6 ] 提出了该问题的一个版本。在 Cover [ 8 ] 早期工作的基础上,Baum 研究了多层感知器的记忆容量,即具有阈值激活函数的前馈神经结构。他首先研究了网络结构 [ n, m, 1],其中一个隐藏层由 m 个节点组成(并且,如符号所示,隐藏层中有 n 个节点和一个输出节点)。Baum 注意到,对于 R n 中一般位置的数据点 xk,结构 [ n, m, 1] 的记忆容量约为 nm ,即它与连接数成正比。这并不难:一般位置保证任何 n 个数据点子集所跨越的超平面不会错过任何其他数据点;这允许人们在其自己的 n 个数据点批次上训练隐藏层中的 m 个神经元中的每一个。Baum 然后问同样的现象是否仍然存在于更深的神经网络中。他问,对于较大的 K,是否存在一个深度神经结构,其总数为 O(√
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹URL:http://wrap.warwick.ac.uk/144053如何引用:有关最新的书目引用信息,请参考发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
在可见波长下片上创建相干光对于光谱和计量系统的现场部署至关重要。虽然在特定情况下已经实现了片上激光器,但是尚未报道不受特定增益介质限制的通用解决方案。在这里,我们提出使用硅纳米光子学通过宽分离的光参量振荡 (OPO) 从红外泵浦产生可见光。OPO 使用 900 nm 泵浦分别在 700 nm 和 1300 nm 波段产生信号光和闲置光。它以 (0.9 ± 0.1) mW 的阈值功率工作,比其他仅在红外领域报道过的宽分离微腔 OPO 工作小 50 倍以上。这种低阈值使得直接泵浦成为可能,而无需中间光放大器。我们进一步展示了如何修改设备设计以产生具有相似功率效率的 780 nm 和 1500 nm 光。我们的 nanophotonic O PO 在功率效率、操作稳定性和设备可扩展性方面表现出了独特的优势,并且是朝着灵活地在芯片上产生相干可见光迈出的一大步。
⋆ 每个基本链接都有成功概率 pi ,1 ≤ i ≤ M ,由所有损失元素组成。⋆ 每个量子存储器都有截止时间 t ⋆ ⇒ 截止试验次数 n ⋆ = ⌊ Rt ⋆ ⌋ 。⋆ 对于“良好”的网络,pi 和 n ⋆ 的哪些值是可以接受的?
预测地表能量收支需要精确的地表发射率 (LSE) 和地表温度 (LST) 信息。LST 是基本气候变量之一,也是局部和全球尺度地表过程物理中的重要参数,而 LSE 是物质成分的指标。尽管有大量关于使用遥感数据计算 LST 和 LSE 的方法和算法的出版物,但准确预测这些变量仍然是一项具有挑战性的任务。在现有的计算 LSE 和 LST 的方法中,特别关注的是归一化差异植被指数阈值法 (NDVI THM),尤其是对于农业和森林生态系统。要应用 NDVI THM,了解植被覆盖比例 (P V) 至关重要。本研究的目的是调查使用 NDVI THM 时 P V 预测精度对 LSE 和 LST 估计的影响。2015 年 8 月,在德国东南部巴伐利亚森林国家公园的混合温带森林中开展了一项实地活动,与 Landsat-8 立交桥同时进行。在 37 个地块的实地测量了 P V。使用了四种不同的植被指数以及人工神经网络方法来估计 P V 并计算 LSE 和 LST。结果表明,与传统植被指数(R 2 CV = 0.42,RMSE CV = 0.06)相比,使用人工神经网络(R 2 CV = 0.64,RMSE CV = 0.05)可以提高 P V 的预测精度。本研究结果还表明,估计的 P V 的精度变化影响了 LSE 的计算结果。此外,我们的研究结果表明,虽然 LST 取决于 LSE,但在预测 LST 时还应考虑其他参数,因为更准确的 LSE 结果并没有提高 LST 的预测精度。
不适当的极端风行为模型。基于 Gumbel 模型估计的风敏结构安全指数意味着不切实际的高失效概率(Ellingwood 等人,1980 年)。这可能至少部分归因于
地球技术。美国最近的历史表明,我们的太空计划刺激了广泛的技术创新,这些创新在消费市场中得到了广泛的应用。太空技术以无数种方式彻底改变了我们的日常生活,并将继续这样做。来自太空的能源、太阳能和聚变燃料的进步、先进通信的有用材料、新资源、医学突破以及对人类潜力的更深入了解是我们可以期待的一些直接好处。太空探索计划提供了集中目标,以实现实用和有益的技术变革。