钛合金在500~600℃的高温下具有高强度,可用于飞机的结构件、紧固件和发动机部件,此外还用于汽车发动机部件和/或排气系统,根据其使用情况,需要具有强度、疲劳强度、断裂韧性、抗蠕变性和抗氧化性等各种性能。钛合金的微观结构、织构、化学成分等对疲劳性能的影响主要在飞机领域进行研究,通过引入故障安全和损伤容限设计,提高了可靠性。1-3) 最近,正在进行如下所述的停留疲劳研究以及利用集成计算材料工程(ICME)来一致预测其疲劳寿命的研究和开发。4)日本除了飞机之外,还开发了汽车、消费品(例如高尔夫球杆头)和医疗设备的应用。因此,除了对钛合金的疲劳、裂纹扩展和断裂韧性的基础研究外,5,6)还进行了大量与各自用途所需的性能相关的研究。
自上次(第13)届世界钛会议以来,美国就一直在钛技术,产品,加工,计算建模工具和应用方面继续进行实质性进展。添加剂制造生产的钛组件已在商用和军用飞机硬件中获得了合格并实现了生产应用。已开发出新的高性能钛合金,用于更高的温度服务和需要更苛刻的静态和动态特性的应用。当前针对钛的生产过程已经进行了优化,并开发了新的过程,以进一步降低成本并提高产品质量。钛供应商,OEM,政府实验室和学术界正在紧密合作,以解决整个行业的基本问题。计算机建模现已在工业和研究设施中广泛使用,以加快这些发展的步伐和成功。
描述Titanium Taq是一种混合物,该混合物由缺乏5ʹ外核酸酶的TAQ聚合酶和Taqstart®抗体(一种单克隆抗体,在环境温度下抑制钛Taq。taqstart抗体提供自动热启动PCR。还包括了优化的缓冲液混合物(最终浓度为3.5 mm mgcl 2)和DNTP的纯化混合物(每种2.5 mm)。无RNase GC熔化试剂(5M)提高了PCR反应的特异性和产量,尤其是在使用具有高GC含量或复杂二级结构的模板时。该套件包含足够的试剂,可用于每个100μl的钛反应。钛DNA扩增试剂盒设计为与Affymetrix DNA映射产物一起使用(见表1)。
作者:N LAGOPATI · 2021 · 被引用 22 次 — 诊断、预防和治疗。二氧化钛纳米颗粒 (TiO2 NPs) 具有广泛的光催化抗菌和抗癌作用...
引言 在商用航空领域,预计 2012 年至 2031 年期间全球市场将需要超过 28,000 架新型大型商用飞机。大约有 10,000 架旧飞机需要更换。据估计,全球空中交通量(以客公里 (RPK) 计算)每年将增长 4.7 %。航空计划 ACARE 2020(欧盟航空研究与创新咨询委员会)和 Flightpath 2050 要求在未来几年内降低飞机的燃料消耗以及二氧化碳和氮氧化物排放量。多方面的空气动力学设计、热负荷和高机械、恶劣的环境和其他工作条件会在机身各个部件中产生异常大的动态应力。这些应力的大小和性质在不同的飞行阶段会进一步变化。这就需要开发能够承受这种变化应力的特殊材料。燃料成本进一步上涨、原材料来源稀缺、效率提升需求、新飞机(军用和民用)需求不断增长,这些因素迫使工程师们制造出更坚固但“尽可能轻便”的飞机框架、发动机和其他部件。为了满足当前和未来的需求,飞机行业必须在创新材料和设计技术以及新制造工艺方面进行大量技术开发。为了满足
使用聚合物电解质膜 (PEM) 进行电解的前景十分光明。[4,5] 缺点是,发生在阳极的氧析出反应 (OER) 表现出缓慢的动力学,因此妨碍了高效的整体电化学水分解。[5,6] 大规模电解需要价格实惠且活性高的电催化剂。[7] Ir-[8–10] 和 Ru-[11,12] 材料在酸性电解质中表现出最高的催化 OER 活性。由于其更高的稳定性,Ir-基催化剂代表了最先进的阳极材料。 [8,13,14] 为了提高活性贵金属的利用率,人们尝试了不同的方法,如将 IrOx 与地球上储量丰富的金属氧化物(TiO2、[15] Ta2O5、[16] SnO2[17])合金化,将 IrOx 以纳米晶体的形式分散在高表面积载体材料上(Sb 掺杂的 SnO2[18]),或通过模板工艺引入明确的纳米结构。[10,19] 然而,在添加绝缘过渡金属氧化物(如 TiO2[20] 或 Ta2O5)后,电导率经常会下降。[21] 至于载体材料的稳定性,掺杂已被证明可以提高耐腐蚀性,但大多数载体材料在酸性下稳定性较差。 [22] 感兴趣的读者可以参阅 Maillard 等人撰写的一篇综合评论。[23]
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
图1(a)柔性锡/GESN异质结的示意图PDS:(a-i)形成蚀刻孔阵列以促进随后的底切进程。(A-II)HF底切以释放GESN膜,然后在PET底物上进行翻转。(A-III)通过溅射锡形成矩形异质结。(A-IV)NI接触的沉积。(A-V)和(A-VI)分别通过凹形和凸弯曲固定装置应用外部单轴拉伸和压缩菌株。(b)柔性锡/GESN PD的光学图像及其在显微镜图像中放大。图1概述了柔性锡/GESN异质结PD的制造过程。准备
在过去的 25 年里真正蓬勃发展。最初,这些金属因其出色的耐腐蚀性而被选中。然而,最近的消费者应用是美观、无毒和轻便(钛)等特性的结果。这些品质已应用于艺术、建筑、珠宝、体育用品、生物医学设备、自行车和汽车。钛和锆不再被视为奇异,而是找到了不断增加的应用基础。以下七篇论文代表了其中一些新的使用领域。还涵盖了传统应用领域,介绍了旨在增强的新技术