摘要 番茄 (Solanum lycopersicum L.) 是一种商业化种植的蔬菜,属于茄科,是继马铃薯 (Solanum tuberosum L.) 和洋葱 (Allium cepa L.) 之后第三大重要蔬菜。番茄因其新鲜果实和加工酱汁而被种植,全球产量超过 1.53 亿公吨。然而,现代番茄品种的糖、酸和挥发性等位基因多样性有限,因为在育种计划中,风味通常不太受重视。转化酶是番茄风味和糖代谢的重要调节剂。如果不清楚转化酶和蔗糖代谢的作用,番茄风味的遗传控制仍然不完整。本综述概述了我们目前对转化酶在蔗糖代谢中的作用方式、它们在番茄基因组中的进化和功能差异、在应激反应中的作用、水果风味和品质的遗传和激素控制的理解。我们总结了转化酶在糖代谢和水果风味中的主要作用。
1. 约翰霍普金斯大学计算机科学系,美国马里兰州巴尔的摩 21218 2. 洛桑大学整合基因组学中心,瑞士洛桑 CH-1015 3. 冷泉港实验室,美国纽约州冷泉港 11724 4. 霍华德休斯医学研究所,冷泉港实验室,美国纽约州冷泉港 11724 5. 约翰霍普金斯大学生物系,美国马里兰州巴尔的摩 21218 *通信地址:mschatz@cs.jhu.edu,sebastian.soyk@unil.ch 摘要 推进作物基因组学需要由高质量个性化基因组组装实现的高效遗传系统。在这里,我们介绍了 RagTag,一套用于自动化组装支架和修补的工具,并为广泛使用的番茄基因型 M82 和 Sweet-100 建立了染色体规模的参考基因组,Sweet-100 是我们为加速功能基因组学和基因组编辑而开发的快速循环基因型。这项工作概述了快速扩展其他植物物种的遗传系统和基因组资源的策略。主要基因组测序和编辑方面的最新技术进展使得以前所未有的精度查询和操作作物基因组成为可能。泛基因组可以捕获作物物种内的多样化等位基因,但研究它们的表型后果受到相关和多样化基因型中有效的功能遗传系统的限制。番茄是研究驯化和数量性状遗传学的典型作物系统。对数百个番茄基因组的测序揭示了巨大的基因组多样性 [1,2];然而,只有少数种质拥有染色体级基因组 [3–5],而且参考基因组 (Heinz 1706) 与常用于遗传和分子实验的基因型 (例如品种 M82、Moneymaker、Ailsa Craig 等) 之间存在历史差异。大果品种 M82 已被用作遗传、代谢和发育分析的主要参考 [6,7];然而,缺乏高质量的基因组组装,导致基因组学分析中出现参考偏差和错误信号。此外,对具有较大果实的品种进行表型分析需要大量劳动力,并且需要广泛的生长设施来容纳具有较长世代周期的大型植物。超矮小果实品种 Micro-tom 克服了其中的一些限制 [8],但高度诱变的背景、严重的激素和发育异常以及低下的果实品质削弱了其在研究许多具有转化农学重要性的表型(如枝条、花序和果实发育)方面的价值(图 1a 和补充图 1a-f)。
C-SL、Y-CL、JS 和 M-CS 构思并设计了实验。C-TH 和 Y-61 HY 进行了 CRISPR-Cas9 实验。C-TH、Y-HY、Q-WC、J-JY 和 F-HW 62 进行了原生质体再生、细胞生物学、分子生物学和靶向 63 诱变实验。SL 进行了 SpCas9 纯化。Y-LW 进行了 WGS 64 文库制备和 qPCR 分析。P-XZ 和 Y-CL 进行了生物信息学 65 分析。Y-HC、C-TH、C-SL、Q-WC 和 F-HW 进行了病毒相关分析。C-66 TH 进行了细胞生物学。C-TH 和 S-IL 进行了嫁接。JS、M-CS、Y-CL 和 67 C-SL 在所有合著者的帮助下撰写了手稿。所有作者都阅读并 68 批准了最终手稿。69
摘要 2020 年 3 月 17 日至 10 月 20 日,杰纳西县卫生局 (GCHD) 调查了 295 例位于联邦设施外居民中的 COVID-19 病例。通过医疗记录和患者访谈,GCHD 收集了患者的症状,包括发病时的症状以及访谈/入院前和入院当天的症状。在此时间范围内接受调查的患者中,有 81 人出生于 1990 年或之后;在这个年龄组,GCHD 确定了每个病例的 HPV 疫苗接种状况。患者在 COVID-19 病程中自我报告的症状用于比较接种疫苗组和未接种疫苗组的病情严重程度和症状类型。我们发现 HPV 疫苗接种组出现咳嗽、肌肉酸痛和疲劳的可能性在统计学上显著降低。接种 HPV 疫苗似乎显著增加了感染病例完全不出现任何症状的可能性 P (.019)。关键词:COVID-19、接种疫苗、HPV、HPV 疫苗、医疗记录、患者
抽象关键信息使用祖先服装开发的多个双亲种群在番茄中鉴定出六个新型的水果重量QTL。在这些基因座的有益等位基因出现在半动脉的亚群中,并可能被抛在后面。这项研究为这些等位基因进入育种计划铺平了道路。摘要在农作物驯化过程中强烈选择了可食用器官的大小和重量。同时,人类还专注于水果和蔬菜的营养和文化特征,有时会反对对有益尺寸和重量等位基因的选择性压力。因此,器官重量的新型改进等位基因可能仍在祖先种质中分离。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。 我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。 小肠和隔层水果组织成比例地增加,表明靶向选择。 我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。 这些父母还显示出果实体重属性的差异以及大小增加的发育时机。 对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。小肠和隔层水果组织成比例地增加,表明靶向选择。我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。这些父母还显示出果实体重属性的差异以及大小增加的发育时机。对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。随后通过后代测试对位于染色体1、2和3的三个QTL进行了验证。通过探索已知的果实体重基因和已确定的QTL的隔离,我们估计,新近鉴定的基因座中最有益的等位基因是从南美的半动脉亚群中引起的,并且不太可能传播到完全驯化的土地。因此,这些等位基因可以使用本研究中确定的种质和遗传资源纳入育种计划。
CRISPR/CAS介导的基因组编辑技术已被广泛应用于通过在各种植物物种中产生短插入或缺失(Indel)来创建基因的基因淘汰等位基因。由于同源指导修复(HDR)的低效率和HDR DNA模板的差异,精确的基因组编辑在植物中仍然具有挑战性(Mao等,2019)。最近开发了一种串联重复HDR方法,用于替换水稻的序列,这对单子叶植物最有用(Lu等,2020)。基础编辑器从Cas9 nickase融合与胞嘧啶和腺嘌呤脱氨酶相关的基础编辑器实现了目标的C-T或A-TO-G替换,但仅限于特定类型的碱基替代品和目标位点选择(Mao等人,2019年)。在哺乳动物细胞中开发了一种“搜索和替换”方法,也称为Prime编辑,该方法可以在目标位点上的用户定义的序列变化而无需DSB或DNA修复模板提供(Anzalone等,2019)。几个研究小组已经采用了这种方法用于单子叶植物,包括大米和小麦(Butt等,2020; Hua等,2020; Li等,2020; Lin等,2020; Tang等,2020; 2020; Xu等,2020)。由于尚不清楚的原因,尽管基础编辑在诸如大米之类的单子叶植物中非常有效,但其dicot中的效率在dicots中非常低(Kang等,2018; Mao等,2019)。尚不清楚是否可以将主要编辑用于番茄植物(例如番茄)。在这里,我们报告了通过密码子和发起人优化在番茄中成功采用的主要编辑者。
Microtronics的思维方式正在为我们所服务的行业中的CUS Tomers创造价值。我们在核心质量控制技术方面的深刻经验和领导才能使我们在尖端设备的开发和贡献中进行了贡献。通过永久改进,全球SUP港口,与CUS Tomers的培训和紧密合作,我们保证高质量的产品和服务。当地代表经过永久培训,以为您提供最佳的支持 - 在全球范围内。
随着果树作物品种的驯化和改良,果实大小也发生了显著的进化。在番茄 (Solanum lycopersicum) 中,CLAVATA-WUSCHEL 信号通路基因的自然发生顺式调控突变导致果实大小显著增加,产生增大的分生组织,从而使花长出额外的器官,果实也更大。在这项工作中,通过结合测序定位和 CRISPR/Cas9 基因组编辑方法,我们分离出了一种调控花分生组织活性的 AP2/ERF 转录因子——过多花器官 (ENO)。因此,ENO 基因突变会导致植物因花分生组织增大而产出更大的多室果实。遗传分析表明,eno 与 LOCULE NUMBER(编码 SlWUS )和 FASCIATED(编码 SlCLV3 )基因座的突变表现出协同效应,这两个基因座是栽培番茄驯化过程中果实大小进化的关键因素。我们的研究结果表明,eno 突变会以花特异性的方式导致 SlWUS 表达域的大幅扩增。体外结合结果表明,ENO 能够与 SlWUS 启动子区内的 GGC-box 顺式调控元件相互作用,表明 ENO 直接调控 SlWUS 表达域以维持花干细胞稳态。此外,对 ENO 基因座自然等位基因变异的研究证明,ENO 启动子中的顺式调控突变在驯化过程中受到了正向选择的靶向,为现代番茄果腔数量和果实大小的大幅增加奠定了基础。
驯化导致番茄耐盐性降低。为了确定造成这种缺陷的遗传成分,我们对由 369 个具有较大自然变异的番茄种质组成的群体进行了根系 Na + /K + 比的全基因组关联研究 (GWAS)。与根系 Na + /K + 比相关的最显著变异是在编码进化枝 IV HAK/KUP/KT 转运蛋白成员的基因 SlHAK 20 中确定的。我们进一步发现,SlHAK 20 运输 Na + 和 K + 并在盐胁迫条件下调节 Na + 和 K + 稳态。发现 SlHAK 20 编码序列的变异是与 Na + /K + 比相关的致病变异,并赋予番茄耐盐性。番茄 SlHAK 20 和水稻同源基因的敲除突变导致对盐胁迫的高度敏感性。总之,我们的研究揭示了一种以前未知的耐盐分子机制,该机制是造成栽培番茄品种耐盐性不足的原因。我们的研究结果为通过分子育种提高番茄和其他作物的耐盐性提供了重要信息。