1.1光声成像,有一些密切相关但不同的成像方式在光声成像的标题下。所有人都利用光声效应,这是当充分短的光脉冲被弹性材料吸收并随后被热化时,吸收位点将充当声脉冲的来源。1 - 3中,在所有变体中,光脉冲都针对正在研究的软生物组织,并在组织表面测量所得的声脉冲。从声脉冲的测量值中,可以形成吸收光的图像。这是光声图像。光声显微镜与光声断层扫描的不同之类的方式不同,以收集数据并形成图像。在光学显微镜中,光束或声学探测器都被牢固地聚焦并横跨组织表面扫描。1,4由于焦点引起的定位,可以直接从测量的声学时间序列中形成图像。确实,正是聚焦的紧密性决定了图像的分辨率。(源或检测器通常是栅格扫描的事实不是使显微镜的原因;一系列集中的来源或检测器也可以使用。)是释放的 - 实际上,照明的布置使整个利益区域充满光 - 并且一系列未加注(或至少不是紧密的集中)探测器可用于记录产生的声学时间序列。1,2因为光声源可以分布在整个组织中,并且每个时间序列都可以包含来自任何地方的信号(因为检测器没有重点),因此与显微镜相比,数据和源之间的连接更为复杂,并且必须使用图像重建算法来形成图像。光声断层扫描,而不是显微镜,是本综述的主要关注点,尽管所述的组织光学功能将适用于浊度介质中的所有光声成像方法。
1。J. Bordes等。 ,“对纠缠伽玛光子的量子反应性的首次详细研究”,物理。 修订版 Lett。 133,132502(2024)。 2。 A. L. McNamara等。 ,“使用PET进行最佳成像:一硅可行性研究”,物理。 Med。 生物。 59,7587(2014)。 3。 P. Moskal等。 ,“与J-PET检测器相比光子超出光波长的极化的可行性研究”,Eur。 物理。 J. C 78,970(2018)。 4。 D. P. Watts等。 ,“ MEV制度中的光子量子纠缠及其在PET成像中的应用”,Nat。 社区。 12,2646(2021)。 5。 A. Ivashkin等。 ,“测试歼灭光子的纠缠”,Sci。 Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,J. Bordes等。,“对纠缠伽玛光子的量子反应性的首次详细研究”,物理。修订版Lett。 133,132502(2024)。 2。 A. L. McNamara等。 ,“使用PET进行最佳成像:一硅可行性研究”,物理。 Med。 生物。 59,7587(2014)。 3。 P. Moskal等。 ,“与J-PET检测器相比光子超出光波长的极化的可行性研究”,Eur。 物理。 J. C 78,970(2018)。 4。 D. P. Watts等。 ,“ MEV制度中的光子量子纠缠及其在PET成像中的应用”,Nat。 社区。 12,2646(2021)。 5。 A. Ivashkin等。 ,“测试歼灭光子的纠缠”,Sci。 Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,Lett。133,132502(2024)。2。A. L. McNamara等。 ,“使用PET进行最佳成像:一硅可行性研究”,物理。 Med。 生物。 59,7587(2014)。 3。 P. Moskal等。 ,“与J-PET检测器相比光子超出光波长的极化的可行性研究”,Eur。 物理。 J. C 78,970(2018)。 4。 D. P. Watts等。 ,“ MEV制度中的光子量子纠缠及其在PET成像中的应用”,Nat。 社区。 12,2646(2021)。 5。 A. Ivashkin等。 ,“测试歼灭光子的纠缠”,Sci。 Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,A. L. McNamara等。,“使用PET进行最佳成像:一硅可行性研究”,物理。Med。生物。59,7587(2014)。 3。 P. Moskal等。 ,“与J-PET检测器相比光子超出光波长的极化的可行性研究”,Eur。 物理。 J. C 78,970(2018)。 4。 D. P. Watts等。 ,“ MEV制度中的光子量子纠缠及其在PET成像中的应用”,Nat。 社区。 12,2646(2021)。 5。 A. Ivashkin等。 ,“测试歼灭光子的纠缠”,Sci。 Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,59,7587(2014)。3。P. Moskal等。,“与J-PET检测器相比光子超出光波长的极化的可行性研究”,Eur。物理。J.C 78,970(2018)。4。D. P. Watts等。,“ MEV制度中的光子量子纠缠及其在PET成像中的应用”,Nat。社区。12,2646(2021)。5。A. Ivashkin等。 ,“测试歼灭光子的纠缠”,Sci。 Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,A. Ivashkin等。,“测试歼灭光子的纠缠”,Sci。Rep。13,7559(2023)。 6。 S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,Rep。13,7559(2023)。6。S. Parashari等。 ,“在an灭量子的'conde固定难题上关闭门”,物理。 Lett。 b 852,S. Parashari等。,“在an灭量子的'conde固定难题上关闭门”,物理。Lett。 b 852,Lett。b 852,
1.1光声成像,有一些密切相关但不同的成像方式在光声成像的标题下。所有人都利用光声效应,这是当充分短的光脉冲被弹性材料吸收并随后被热化时,吸收位点将充当声脉冲的来源。1 - 3中,在所有变体中,光脉冲都针对正在研究的软生物组织,并在组织表面测量所得的声脉冲。从声脉冲的测量值中,可以形成吸收光的图像。这是光声图像。光声显微镜与光声断层扫描的不同之类的方式不同,以收集数据并形成图像。在光学显微镜中,光束或声学探测器都被牢固地聚焦并横跨组织表面扫描。1,4由于焦点引起的定位,可以直接从测量的声学时间序列中形成图像。确实,正是聚焦的紧密性决定了图像的分辨率。(源或检测器通常是栅格扫描的事实不是使显微镜的原因;一系列集中的来源或检测器也可以使用。)是释放的 - 实际上,照明的布置使整个利益区域充满光 - 并且一系列未加注(或至少不是紧密的集中)探测器可用于记录产生的声学时间序列。1,2因为光声源可以分布在整个组织中,并且每个时间序列都可以包含来自任何地方的信号(因为检测器没有重点),因此与显微镜相比,数据和源之间的连接更为复杂,并且必须使用图像重建算法来形成图像。光声断层扫描,而不是显微镜,是本综述的主要关注点,尽管所述的组织光学功能将适用于浊度介质中的所有光声成像方法。
MEDICAL POLICY DETAILS Medical Policy Title Positron Emission Tomography (PET) Oncologic Applications Policy Number 6.01.29 Category Technology Assessment Original Effective Date 11/18/99 Committee Approval Date 04/19/00, 04/19/01, 01/17/02, 10/16/02, 01/16/03, 08/21/03, 05/19/04, 08/18/05, 03/16/06, 04/19/07, 09/20/07, 08/21/08, 11/19/09, 04/22/10, 04/21/11, 09/20/12, 08/15/13, 04/17/14, 04/16/15, 04/21/16, 01/19/17, 12/21/17, 10/18/18, 06/20/19, 05/21/20, 05/20/21, 09/16/21, 03/24/22, 09/15/22, 08/17/23, 01/18/24 Current Effective Date 04/15/24 Archived Date N/A Archive Review Date N/A Product免责声明•服务取决于合同;如果产品不包括服务的承保范围,则不涵盖它,并且不适用医疗政策标准。•如果商业产品(包括基本计划或儿童健康以及产品),则适用医疗政策标准。•如果医疗补助产品涵盖特定服务,并且没有纽约州医疗补助指南(EMEDNY)标准,则医疗政策标准适用于该福利。•如果Medicare产品(包括Medicare HMO Dual Special Suelds Program(DSNP)产品)涵盖了一项特定的服务,并且没有用于该服务的国家或地方Medicare覆盖范围的决定,则医疗政策标准适用于该福利。•如果Medicare HMO Dual特殊需求计划(DSNP)产品不涵盖特定服务,请参阅Medicaid产品覆盖范围。
量子态断层扫描(从 𝑛 个副本中学习 𝑑 维量子态)是量子信息科学中一项普遍存在的任务。它是从 𝑛 个样本中学习 𝑑 结果概率分布的经典任务的量子类似物。更详细地说,目标是设计一种算法,给定某个(通常是混合的)量子态 𝜌 ∈ C 𝑑 × 𝑑 的 𝜌 ⊗ 𝑛,输出一个估计值 2 ̂︀ 𝜌(的经典描述),该估计值以高概率“𝜖 接近”𝜌。主要挑战是将样本(副本)复杂度 𝑛 最小化为 𝑑 和 𝜖(有时还有其他参数,例如 𝑟 = 秩 𝜌 )的函数。我们还将关注设计仅进行单次(而不是集体)测量的算法的实际问题。指定量子断层扫描任务的一个重要方面是“𝜖-close”的含义;即,判断算法估计的损失函数是什么。有很多自然的方法可以测量两个量子态的发散度——甚至比两个经典概率分布的发散度还要多——并且所选择的精确测量方法会对必要的样本复杂度以及最终估计对未来应用的效用产生很大的影响。本文的主要目标是展示一种新的断层扫描算法,该算法实现最严格的准确度概念(Bures)𝜒 2 -发散度,同时具有与以前使用不忠诚度作为损失函数的算法基本相同的样本复杂度。然后,我们给出了一个应用,即量子互信息测试问题,这关键依赖于我们实现关于𝜒 2 -发散度的有效状态断层扫描的能力。
摘要 — 随着商用量子计算机种类的不断增加,对能够表征、验证和确认这些计算机的工具的需求也在不断增加。这项工作探索了使用量子态断层扫描来表征单个量子比特的性能,并开发了矢量场可视化来呈现结果。所提出的协议在模拟和 IBM 开发的量子计算硬件上进行了演示。结果确定了此硬件标准模型中未反映的量子比特性能特征,表明有机会提高这些模型的准确性。所提出的量子比特评估协议作为免费开源软件提供,以简化在其他量子计算设备上复制该过程的任务。索引术语 — 量子计算、量子态断层扫描、量子比特基准
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能通过在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像来开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
考虑一个通过双光子相互作用耦合的量子比特和谐振器的超导电路。当谐振器最初处于相干态叠加时,在固有退相干的背景下检查光学断层扫描和量子相干动力学。结果表明,光学断层扫描是量子比特-谐振器相互作用产生的量子相干性的良好量化器。研究了量子比特-谐振器失谐和固有退相干对相干甚至相干态的光学断层扫描分布动力学的影响。光学断层扫描分布的动力学高度依赖于失谐和固有退相干。我们的数值模拟表明,光学断层扫描与产生的量子相干之间存在关系。当量子比特-谐振器失谐和固有退相干增强时,光学断层扫描的幅度和强度以及结构会发生很大变化。
L. Luo 1 ∗,M。Motz 1,2 ∗,J.Kang 3 3,C。VSCH 3 1。 C. B. Ed。 b.ng 1†。
摘要 — 量子信息的脆弱性使得在量子信道传输下完全将量子态与噪声隔离几乎是不可能的。量子网络是由量子处理设备通过量子信道互连而形成的复杂系统。在这种情况下,表征信道如何在传输的量子态中引入噪声至关重要。非幺正量子信道引入的误差分布的精确描述可以为量子纠错协议提供信息,以针对特定误差模型定制操作。此外,通过使用端到端测量监控网络来表征此类误差,端节点可以推断网络链路的状态。在这项工作中,我们通过引入量子网络断层扫描问题来解决量子网络中量子信道的端到端表征问题。该问题的解决方案是使用仅在端节点中执行的测量来估计定义网络中所有量子信道的 Kraus 分解的概率。我们详细研究了任意星形量子网络的情况,这些网络的量子信道由单个 Pauli 算子描述,例如比特翻转量子信道。我们为此类网络提供了多项式样本复杂度的解决方案。我们的解决方案证明预共享纠缠在参数可识别性方面具有估计优势。