1. Zhao N、Qi J、Zeng Z、Parekh P、Chang CC、Tung CH 等。使用简单的阳离子聚合物纳米复合物转染难以转染的淋巴瘤/白血病细胞。《Journal of Controlled Release》。2012;159(1):104-10。2. Meacham JM、Durvasula K、Degertekin FL、Fedorov AG。细胞内递送的物理方法。《Journal of Laboratory Automation》。2014 年 2 月;19(1):1-18。3. Kaestner L、Scholz A、Lipp P。转染和基因递送的概念和技术方面。《Bioorganic & Medicinal Chemistry Letters》。2015 年 3 月;25(6):1171-6。4. Mosier DE。“逆转录病毒载体的安全注意事项:简要回顾”简介。《Applied Biosafety》。2016;9(2):68-75。 5. Glover DJ、Lipps HJ、Jans DA。《面向人类安全、非病毒治疗性基因表达》。《自然遗传学评论》。2005 年 4 月 10 日;6(4):299-310。6. Kim TK、Eberwine JH。《哺乳动物细胞转染:现在和未来》。《分析和生物分析化学》。2010 年;397(8):3173-8。7. Rols MP。《电通透化:一种将治疗分子递送到细胞中的物理方法》。《生物化学与生物物理学报》(BBA)-生物膜。2006 年 3 月;1758(3):423-8。8. Jordan ET、Collins M、Terefe J、Ugozzoli L、Rubio T。《优化原代细胞和其他难以转染的细胞中的电穿孔条件》。《生物分子技术杂志》。2008 年; 9. Chicaybam L、Barcelos C、Peixoto B、Carneiro M、Limia CG、Redondo P 等人。一种用于哺乳动物细胞遗传改造的有效电穿孔方案。生物工程与生物技术前沿。2016;4:99。10. Machy P、Lewis F、McMillan L、Jonak ZL。通过电穿孔将基因从靶向脂质体转移到特定淋巴细胞。美国国家科学院院刊。2006;85(21):8027-31。11. Maurisse R、De Semir D、Emamekhoo H、Bedayat B、Abdolmohammadi A、Parsi H 等人。将 DNA 转染到来自不同谱系的原代和转化哺乳动物细胞中的比较。BMC 生物技术。2010;10。 12. Gahn TA、Sugden B. 电穿孔显著、短暂抑制伯基特淋巴瘤细胞系中 Epstein-Barr 病毒潜伏膜蛋白基因的表达。J Virol。1993;67(11):6379-86。13. Goldstein S、Fordis CM、Howard BH。电穿孔 G2/M 同步细胞并用丁酸钠处理后,转染效率提高,细胞存活率提高。Nucleic Acids Research。1989;17(10):3959-71。14. Liew A、André FM、Lesueur LL、De Ménorval MA、O'Brien T、Mir LM。使用方波电脉冲对人类间充质干细胞进行可靠、高效、实用的电基因转移方法。人类基因治疗方法。2013 年 10 月;24(5):289-97。 15. Kreiss P, Cameron B, Rangara R, Mailhe P, Aguerre-Charriol O, Airiau M 等。质粒 DNA 大小不影响脂质体的理化性质,但可调节基因转移效率。核酸研究。1999;27(19):3792-8。16. Lesueur LL, Mir LM, André FM。克服体外原代细胞大质粒电转移的特殊毒性。分子疗法 - 核酸。2016;5:e291。17. Germini D、Saada YB、Tsfasman T、Osina K、Robin CC、Lomov N 等人。基于一步法 PCR 的检测方法用于评估基因组 DNA 编辑工具的效率和精度。分子疗法 - 方法与临床开发。2017 年 6 月;5(六月):43-50。18. Georgakilas AG、Martin OA、Bonner WM。p21:双面基因组守护者。分子医学趋势。2017 年 4 月;23(4):310-9。
产品编号 产品描述 单位大小 MPK1025 Neon 转染系统 10 µL 试剂盒 25 x 2 rxn MPK10025 Neon 转染系统 100 µL 试剂盒 25 x 2 rxn MPK1096 Neon 转染系统 10 µL 试剂盒 96 x 2 rxn MPK10096 Neon 转染系统 100 µL 试剂盒 96 x 2 rxn MPT100 Neon 转染管 100 管 我们鼓励您考虑转换到我们改进的 Invitrogen Neon NxT 电穿孔系统,该系统利用相同、可信赖的电穿孔技术,性能相当或更好。有关系统性能的更多信息,我们建议您查看 Neon 与 Neon NxT 比较应用说明。使用 Neon NxT 电穿孔系统,您将受益于 Neon 转染系统的以下相同方面:
图3。准备和使用病毒载体在靶细胞中重组蛋白表达。(1)包装细胞(例如HEK293)用编码感兴趣基因和必要病毒蛋白的三个或四个质粒转染。(2)将病毒组装在包装细胞中,然后收获和纯化。(3)该病毒用于转导靶细胞,释放感兴趣的基因。(4)在此示例中,将慢病毒载体的RNA反向转录为DNA,将DNA整合到宿主基因组中以进行重组蛋白表达。
以下是使用 DharmaFECT™ 1-4 转染试剂(目录号 T-2001、T-2002、T-2003、T-2004)将合成向导 RNA 转染到表达 Cas9 的培养哺乳动物细胞中的简化方案。合成向导 RNA 可以是合成的单向导 RNA,也可以是与 tracrRNA 复合的合成 crRNA。适用于完成细胞系优化后使用。有关完整详细信息以及优化指南,请参阅技术手册。
摘要 植物原生质体是利用基因编辑对所需性状进行遗传操作的可靠实验系统。尽管如此,突变原生质体的选择和再生仍具有挑战性,而随后恢复成功编辑的植物是先进植物育种技术的一个重要瓶颈。为了缓解与原生质体转基因表达和原生质体再生相关的障碍,开发了一种新方法。结果表明,线性化 DNA 可以有效转染马铃薯原生质体,而来自各种植物的 UBIQUITIN10 启动子可以有效地指导转基因表达。此外,还对转染原生质体的卡那霉素抑制浓度进行了标准化,新霉素磷酸转移酶 2 ( NPT2 ) 基因可用作富集转染原生质体的有力选择标记。此外,BABYBOOM ( BBM ) 转录因子的瞬时表达促进了原生质体衍生愈伤组织的再生。总之,这些方法显著增加了对表现出高转基因表达的原生质体的筛选,从而显著提高了原生质体衍生愈伤组织中基因编辑事件的发生率,达到 95%。本研究开发的方法促进了四倍体马铃薯植物的基因编辑,并为多倍体生物中的复杂基因操作开辟了道路。
基因编辑是生物医学领域的一种多功能技术,可促进基础研究和临床治疗。成簇的规律间隔短回文重复序列 (CRISPR) 作为基因组编辑机制的发展加速了基因编辑的应用。然而,由于包装尺寸有限以及对某些细胞类型的效率低下,使用传统转染方法(如病毒转导和化学载体)时,CRISPR 成分的递送通常会受到影响。在这篇综述中,我们讨论了可以克服这些限制的 CRISPR 基因编辑的物理转染方法。我们概述了不同类型的物理转染方法,重点介绍了递送 CRISPR 成分的新技术,并强调了微纳米技术在提高转染性能方面的作用。我们介绍了对当前技术局限性的看法,并对物理转染方法的未来发展提供了见解。
图 3. 内毒素水平比较。根据制造商说明 (Lonza),使用 Limulus Amebocyte Lysate (LAL) 测试测量使用 QIAGEN 的 EndoFree Plasmid Kit 和 QIAGEN Plasmid Plus Kit 以及 Zymo 的 ZymoPureII Endo-Zero Plasmid Kit 制备的质粒 DNA 样本中的内毒素水平。对于每个试剂盒,对 2 个样本进行 1:100 稀释,重复三次测试。测试的标准曲线范围在 0.005 EU/ml 和 50 EU/ml 之间。EndoFree Plasmid Plus 试剂盒产生的质粒 DNA 不含任何可检测的内毒素,而 Plasmid Plus 试剂盒提供的质粒 DNA 中内毒素含量显著降低。相比之下,ZymoPureII 产生的质粒 DNA 含有大量内毒素。通过琼脂糖凝胶电泳评估的两个试剂盒的质粒 DNA 的产量和质量相当(未显示数据)。
参考文献 • (1) Nessa A、Rahman SA、Hussain K。高胰岛素性低血糖症 - 分子机制。内分泌学前沿。2016;7:29。doi:10.3389/fendo.2016.00029。 (2) Ran FA、Hsu PD、Wright J、Agarwala V、Scott DA、Zhang F。使用 CRISPR-Cas9 系统进行基因组工程。自然协议。2013;8(11):2281-2308。doi:10.1038/nprot.2013.143。 (3) Guo D、Liu H、Ruzi A 等人。使用 CRISPR/Cas9 产生的 ABCC8 缺陷型人类胚胎干细胞模拟先天性高胰岛素症。科学报告。 2017;7:3156。doi:10.1038/s41598-017-03349-w。(4)Nessa A、Rahman SA、Hussain K。先天性高胰岛素血症的分子机制和潜在治疗靶点。孤儿药专家意见。2015;3:8。doi.org/10.1517/21678707.2015.1064819。(5)AP Chandrasekaran、M. Song、KS Kim、S. Ramakrishna。将 CRISPR/Cas9 递送到细胞中的不同方法。Prog Mol Biol Transl Sci,159(2018),第 157-176 页。