最近开发了将薄膜材料的二维(2D)模式转换为3D介质结构的方法,在微系统设计中创造了许多有趣的机会。增长的感兴趣领域是多功能的热,电气,化学和光学接口到生物组织,尤其是3D多细胞,毫米尺度的构建体,例如球体,组装和类动物。本文提供了3D机械界面的示例,其中parylene-c的细丝带构成了透明,高度合规的框架的基础,这些框架可以可逆地打开和封闭,以捕获,包裹和机械限制脆弱的3D组织,以柔和的,非毁灭性的方式,以确切的粘膜属性测量,用于使用粘ellasticalsiques in nanoindent in nanoindentiques in nanoindentiques in nanoindentiques。有限元分析是一种设计工具,可用于指导对形状匹配的3D体系结构的几何和材料参数的选择。这些计算方法还量化了在打开和关闭其赋予的结构和力的过程中变形的各个方面,它们赋予了它们的结构和力。纳米识别的研究表明,根据器官的年龄,有效的Young的模量在1.5至2.5 kPa范围内。这一结果收集表明,在毫米级,软生物组织的非侵入性机械测量中广泛的效用。
入选论文全面概述了可解释和透明人工智能领域的最新进展和挑战,特别关注混合系统、可解释性技术、道德考量和差异隐私的整合。Vertsel 和 Rumiantsau (2024) 和 Aliaksei 等人 (2024) 探索了用于商业洞察和决策的混合 LLM/基于规则的系统,强调了将基于规则的逻辑与高级语言模型相结合的挑战。Kuhl 等人 (2023) 和 Wachter 等人 (2023) 讨论的反事实解释强调了人工智能决策中的可用性和以人为本的设计,展示了可解释性在用户交互中日益增长的重要性。同时,Wang 等人 (2023) 和 Mildenhall 等人 (2024) 专注于提高生成模型的透明度,特别是在神经辐射场中,其中
摘要 身体色素沉着限制了体内成像,因此也限制了生物医学纵向研究的开展。一种绕过这一障碍的可能性是使用色素沉着突变体,这种突变体常用于斑马鱼和青鳉等鱼类。为了解决衰老的根本原因,短命的非洲鳉鱼 Nothobranchius furzeri 最近被确立为模型生物。尽管寿命短暂,但 N. furzeri 显示出哺乳动物衰老的典型迹象,包括端粒缩短、衰老细胞积聚和再生能力丧失。本文,我们报告了通过同时失活三个负责色素沉着的关键基因座来生成透明的 N. furzeri 系。我们证明这种名为 klara 的稳定系可用作不同应用的工具,包括行为实验和通过将荧光团整合到 cdkn1a (p21) 基因座来建立衰老报告基因,并在体内显微镜下复制所得系。
在医疗保健等领域,AI有助于医学诊断,药物发现和个性化治疗建议[2]。同样,在金融市场中,AI驱动算法有助于高频交易,风险评估和欺诈检测[3]。在自动驾驶汽车和机器人技术中的AI部署增强了导航,对象识别和实时决策能力[4]。然而,尽管AI在决策中的潜力是巨大的,但与模型可解释性,可信度和道德考虑有关的挑战仍然存在[5]。一个主要问题是依赖黑盒深度学习模型,尽管它们令人印象深刻,但他们的决策过程缺乏透明度[6]。这种不透明度导致人们对AI应用程序中的公平性,问责制和法规合规性的关注日益加剧[7]。
AmélieSchultheiss,Abderrahime Sekkat,Viet Huong Nguyen,Alexandre Carella,Anass Benayad等。通过空间原子层沉积,高性能封装透明导电聚合物。合成金属,2022,284,pp.116995。10.1016/j.synthmet.2021.116995。hal-03636177
摘要 激光已被证明是一种成熟且用途广泛的工具,与其他现有的微加工技术相比,它为各种材料的精密工程提供了极大的灵活性和适用性。过去几十年来,激光得到了迅速发展,并被广泛应用于从科学研究到工业制造的各个领域。透明硬质材料由于硬度高、脆性大、光吸收率低,一直是传统激光加工技术的几大技术挑战。为克服这些障碍,人们开发了各种混合激光加工技术,例如激光诱导等离子辅助烧蚀、激光诱导背面湿法蚀刻和蚀刻辅助激光微加工。本文回顾了这些混合技术的基本原理和特点,介绍了这些技术如何用于精密加工透明硬质材料及其最新进展。这些混合技术在透明硬质基底表面或内部制备微结构和功能器件方面表现出了显著的效率、精度和质量优势,使其在微电子、生物医学、光子学和微流控等领域具有广泛的应用前景。本文还对混合激光技术进行了总结和展望。
脉冲激光沉积 (PLD) 是一种成熟的复杂化学计量薄膜沉积技术,在成功制造薄膜形式的高温超导体 (HTS) 后引起了广泛的研究关注。[1] 从那时起,PLD 主要用于在晶格匹配基板上外延生长多种复合氧化物的应用,但在光伏 (PV) 领域尚未得到探索。尽管在 21 世纪初,高导电性的 In 基 TCO 已通过 PLD 制造并成功用作 OLED 的前触点 [2,3],但关于 PLD 生长触点在 PV 设备中的应用的报道仍然很少。文献报道包括用于 CIGS [4] 和有机 [5] 太阳能电池的掺杂 ZnO 薄膜以及用于卤化物钙钛矿太阳能电池的金属氧化物传输层。 [6] 此外,PLD 已被提议用于硫族化物吸收层的制造 [7,8],最近又用于卤化物钙钛矿吸收层。[9,10]
TS 模式也可以不采用蛇形线来表示对应于整数自旋共振 γG = k 的离散能量值。这里 γ 是相对论因子,G 是旋磁比的异常部分。对于质子,这样的能量值数量为 25,能量步长为 0.523 GeV。对于氘核,只有一个点,总能量为 13.1 GeV。在理想的对撞机晶格中,自旋运动会退化:任何轨道位置的任何自旋方向都会在每次粒子转动时重复。这意味着 TS 模式下的自旋调谐为零,粒子处于 TS 共振状态。在这种情况下,自旋运动对磁场的微小扰动高度敏感,这些扰动与晶格缺陷以及回旋加速器和同步加速器粒子的振荡有关。在实际情况下,自旋简并被消除,因为极化沿着由对撞机晶格缺陷决定的未知方向变得稳定。极化控制由自旋导航器提供,自旋导航器是基于弱螺线管的设备,可在 SPD 相互作用点设置所需的极化方向。导航器对自旋的影响应大大超过小扰动场的影响 [4]。TS 模式下的极化控制方案如图 3 所示。两个对称放置在 SPD 周围的自旋导航器用于稳定 SPD 垂直平面上所需的极化方向(Ψ 是极化和粒子速度矢量之间的角度)[3]。
太阳能驱动水分解的持久性能和高效率是光电化学 (PEC) 电池尚未同时实现的巨大挑战。虽然由 III-V 族半导体制成的光伏电池可以实现很高的光电转换效率,但它们与电催化剂的功能集成以及工作寿命仍然是巨大的挑战。在此,超薄 TiN 层被用作埋层结 n + p-GaInP 2 光电阴极上的扩散屏障,使得随后的 Ni 5 P 4 催化剂生长为纳米岛时能够升高温度,而不会损坏 GaInP 2 结。所得 PEC 半电池的吸收损失可以忽略不计,饱和光电流密度和 H 2 释放量与用 PtRu 催化剂装饰的基准光电阴极相当。高耐腐蚀 Ni 5 P 4 /TiN 层在 120 小时内显示出不减损的光电阴极运行时间,超过了之前的基准。通过蚀刻去除电沉积铜(引入的污染物),恢复了全部性能,证明了操作耐用性。 TiN 层扩大了合成条件并防止腐蚀,使 III-V PEC 设备稳定运行,而 Ni 5 P 4 催化剂则取代了昂贵且稀缺的贵金属催化剂。
使用迷你领导的设备和SIBS基板上的印刷图像的原始和剪切的SIBS膜之间垂直失真和变形差异的可视化。a)未拉伸设备的照片,d)印刷图像; b)设备和e)原始SIBS基板上的印刷图像伸展50%。c)设备和f)在剪切的SIBS基板上打印的图像伸展50%。(a – c)中的白色比例尺和(d – f)中的黑色比例尺每个代表1 cm。信用:高级材料(2024)。doi:
