下一代测序(NGS)技术已被引入基因组研究已有15年以上。更多的研究人员正在使用NGS作为常规工具来解决他们的研究问题。随着测序质量的成熟和标准化,总体测序数据的质量更由构建的NGS库的质量确定。易于重复的NGS图书馆准备工作流程均匀性能对于研究人员至关重要,尤其是那些处理稀缺和珍贵样本的人。Micronbrane的Unison™Ultralow DNA ngs库Prep套件基于基于良好的转座酶的DNA标记,在PCR扩增步骤之前无需对低输入DNA本身的操作或最少操纵。将酶浓度仔细滴定并针对低输入DNA进行了优化。因此,该试剂盒不仅可以从低至10pg的DNA的超低DNA输入成功构建NGS库,还可以确保放大库的测序曲线是输入DNA样品的真实表示。
虽然存在多种用于小等位基因基因组编辑的技术,但仍然缺乏用于在哺乳动物基因组中靶向整合大 DNA 片段的强大技术。在这里,我们开发了一种基因传递工具 (FiCAT),它结合了 CRISPR-Cas9(发现模块)的精确度和工程化 piggyBac 转座酶(切割和转移模块)的有效载荷转移效率。FiCAT 结合了 Cas9 DNA 扫描和靶向 DNA 的功能以及 piggyBac 供体 DNA 处理和转移能力。PiggyBac 功能域经过工程设计,可提高靶向整合率,同时减少脱靶事件。我们展示了在细胞(人类(Hek293T、K-562)和小鼠(C2C12))和小鼠肝脏体内有效传递和可编程插入小型和大型有效载荷。最后,我们通过生成 394,000 个变体的靶向多样性并进行 4 轮进化,开发出更高效的 FiCAT 版本。在这项工作中,我们开发了一种在哺乳动物基因组中精确、有效地靶向插入多千碱基 DNA 片段的方法。
11:15 – 11:40 Synthetic genetic systems for next-generation biomedicine manufacturing - David James (University of Sheffield) 11:40 – 12:05 Sequence engineering for improved developability of mAbs - Zahra Rattray (University of Strathclyde) 12:05 – 12:15 Rationalising mAb candidate screening with a single holistic developability parameter – Leon Willis (University of Leeds) 12:15 – 12:25 Biomanufacturing and formulation of magnetosome cocktails for biomedical applications - Alfred Fernández-Castané (Aston University) 12:25 -13:15 – ROUND TABLE SESSION: Handling the challenges for bioprocessing 2034 13:15 - 14:05 – POSTER SESSION & LUNCH BREAK 14:05-15:15 – Session 5 – Engineering Biology for Bioprocesssing (Chair – Mark Smales) 14:05 – 14:15 Development of High Throughput Transfection Platform using Lonza's GS PiggyBac Transposase Technology – Titash Sen (Lonza) 14:15 – 14:25 Defining and Manipulating Cellular Mechanisms Underpinning DNA Transfection Efficiency to Enhance Transient Recombinant Protein Production – James Budge (University of Kent) 14:25 – 14:50糖:甜美和简单 - 罗布·菲尔德(曼彻斯特大学)14:50 - 15:15生物生产酵母基因组中的组合设计测试 - 汤姆·埃利斯(帝国学院)会议闭幕,并获得最佳的口头和海报演示
虽然基于Piggybac转座子的转基因被广泛用于各种新兴模型生物,但其在黄油环和飞蛾中相对较低的换位速率却阻碍了其用于鳞翅目常规遗传转化的使用。在这里,我们测试了密码子优化的多活跃pigbac转座酶(hypbase)mRNA形式的适用性,以将转基因盒递送和整合到储藏室的基因组中。与供体质粒共同注射,成功整合了1.5 - 4.4 kb的表达盒,驱动荧光标记物EGFP EGFP,DSRED或EYFP与3XP3启动子中的眼睛和Glia中的EYFP。从72小时的胚胎和幼虫,pupae和携带隐性白眼突变的成年人中,可以从72小时的胚胎中检测到转基因在G 0中的体细胞整合和表达。总体而言,注射卵中有2.5%存活到具有镶嵌荧光的成年成年人中。随后的荧光G 0创建者脱离了3xp3 :: eGFP和3xp3 :: eyfp的单插入副本,并产生了稳定的同源线。表达3xp3 :: DSRED的G 0创始人的一小部分G 0的随机跨跨跨跨,产生了一个稳定的转基因线,以一个以上的转基因插入位点分离。我们讨论了如何使用hypbase在Plodia和其他飞蛾中产生稳定的转基因资源。
转座在重塑所有生物体的基因组中起着关键作用 1 。IS200/IS605 和 IS607 家族 2 的插入序列是最简单的移动遗传元件之一,仅包含其转座及其调控所需的基因。这些元件编码 tnpA 转座酶,这对于动员至关重要,并且通常携带辅助 tnpB 基因,而该基因对于转座而言并非必需。尽管 TnpA 在 IS200/IS605 转座子动员中的作用已得到充分证实,但 TnpB 的功能仍然很大程度上未知。有人提出 TnpB 在转座调控中发挥作用,尽管尚未确定相关机制 3–5 。生物信息学分析表明 TnpB 可能是 CRISPR–Cas9/Cas12 核酸酶的前身 6–8 。然而,尚未发现 TnpB 具有任何生化活性。我们在此表明,耐辐射奇球菌 ISDra2 的 TnpB 是一种 RNA 引导的核酸酶,受来自转座子右端元件的 RNA 引导,切割 5′-TTGAT 转座子相关基序旁的 DNA。我们还表明,TnpB 可以重新编程以切割人类细胞中的 DNA 靶位。总之,这项研究通过强调 TnpB 在转座中的作用扩展了我们对转座机制的理解,通过实验证实了 TnpB 是 CRISPR-Cas 核酸酶的功能性前体,并将 TnpB 确立为基因组编辑新系统的原型。
摘要:现代生物学,尤其是合成生物学,在很大程度上依赖于DNA元素的结构,通常是以质粒的形式进行的。质粒用于多种应用,包括用于随后纯化的蛋白质的表达,用于生产有价值化合物的异源途径的表达以及对生物学功能和机制的研究。对于所有应用,构建质粒后的关键步骤是其序列验证。传统的序列确定方法是Sanger测序,每反应限制约为1000 bp。在这里,我们提出了一种高度可扩展的内部方法,用于使用长阅读纳米孔测序快速验证放大的DNA序列。我们开发了两步扩展和转座酶策略,为双条形码测序提供了最大的灵活性。我们还提供了一个自动分析管道,以快速可靠地分析测序结果,并为每个样本提供易于解释的结果。用户友好的duba.Flow开始到虚拟管道广泛适用。此外,我们表明,使用duba.Flow的构造验证可以通过条形码菌落PCR扩增子测序进行,从而加速了研究。关键字:合成生物学,长阅读测序,DNA构造验证,菌落PCR,实验室自动化,双条形码扩增子测序■简介
T细胞修饰,对B细胞恶性肿瘤的治疗表现出了巨大的希望。成功地将CAR-T细胞疗法转化为其他肿瘤类型(包括实体瘤)是下一个重大挑战。随着构成多种遗传修饰的第二代CAR-T细胞的领域进展,正在开发更复杂的方法和工具。病毒载体,尤其是C返回病毒和慢病毒,由于其高转导效率而被用于CAR -T细胞工程。但是,有限的遗传货物,良好的制造实践(GMP)条件下的高生产成本以及高监管要求是广泛临床翻译的障碍。为了克服这些局限性,正在临床前或临床水平探索不同的非病毒方法,包括转座子/转座酶系统以及mRNA电穿孔和非整合DNA纳米摩析器。基因组编辑工具,允许对特定基因的有效敲除和/或将汽车和/或其他转基因的站点指导整合到基因组中进行,也正在评估用于CAR-T细胞工程。在这篇综述中,我们讨论了用于产生CAR-T细胞的病毒和非病毒载体的发展,重点是它们的优势和局限性。我们还使用不同的基因工程工具讨论了从临床试验中学到的经验教训,并特别关注安全性和有效性。
摘要:在基因组工程中,传入 DNA 的整合依赖于分裂细胞产生的酶,这一直是提高 DNA 插入频率和准确性的瓶颈。最近,据报道,使用 CRISPR 相关转座酶 (CAST) 的 RNA 引导转座在大肠杆菌中非常有效且具有特异性。在这里,我们开发了 Golden Gate 载体来在丝状蓝藻中测试 CAST,并证明它在鱼腥藻属菌株 PCC 7120 中有效。含有 CAST 和工程转座子的相对较大的质粒通过使用自杀或复制质粒的结合成功转移到鱼腥藻中。编码靶标前导链但不编码反向补体链的单向导 (sg) RNA 与 sgRNA 中包含的原间隔子相关基序 (PAM) 序列有效。在对两个不同靶位点进行分析的六种病例中,有四种的插入位点位于 PAM 之后正好 63 个碱基处。复制质粒上的 CAST 具有毒性,可用于治愈质粒。在分析的所有六种情况下,只有由从左到右元素的序列定义的转座子货物被插入目标位点;因此,RNA 引导的转座是由剪切和粘贴引起的。没有内源转座子通过暴露于 CAST 酶而重新动员。这项工作为通过 RNA 引导的转座在丝状蓝藻中进行基因组编辑奠定了基础,无论是在培养中还是在复杂群落中。关键词:鱼腥藻、CRISPR 相关转座子 (CAST)、基因组工程、RNA 引导的转座、minion 测序、从头基因组组装 ■ 简介
正在申请专利的 ExpressPlex 2.0 文库制备试剂盒采用方便的 384 孔 PCR 板配置,可用于高通量多重文库制备。此升级版 ExpressPlex 使用 seqWell 的高性能 TnX ™ 转座酶,该转座酶专为 NGS 文库制备而设计。扩增子 (>350 bp) 和质粒 DNA 是适合该试剂盒的标准输入。附录 E 重点介绍了可以针对小型微生物全基因组测序进行的修改。ExpressPlex 文库与 Illumina MiSeq ™ 、NextSeq ™ 、iSeq ™ 和 NovaSeq ™ 测序平台兼容。每个 ExpressPlex 2.0 - 384 孔试剂盒都包含足够的试剂,可从 384 或 1,536 个单独的 DNA 样本制备与 Illumina 兼容的文库。每个库的标准制备量为 384 个样本,每个试剂盒最多 1,536 个样本。有四种不同的试剂盒可用于从 1,536 个样本中制备文库,在一次测序运行中可加载总共 6,144 种条形码组合。这种多重文库制备程序针对每 8 µl 反应 0.5 - 20 ng 质粒或扩增子 DNA 的输入进行了优化,通常可生成 400 – 1,200 bp 的文库片段长度。文库片段长度取决于 DNA 的质量和所用的磁珠清理率。使用 ExpressPlex 文库制备试剂盒的主要优势和好处是简化的一步式多重文库制备工作流程,可在 40 倍的 DNA 输入浓度范围内自动标准化每个样本的读取输出,同时最大限度地减少人工和耗材成本。使用 ExpressPlex 2.0 – 384 孔试剂盒,可在 120 分钟内制备 384 重文库以进行文库 QC 和测序,手动操作时间不到 30 分钟。
昆虫学采样和存储条件通常会优先考虑效率,实用性和形态特征的保守性,因此可能是DNA保存的次优。这种做法可能会影响下游分子应用,例如高通量基因组文库的结构,这通常需要大量的DNA输入量。在这里,我们使用了实用的TN5转座酶标记的基于基于96孔板的库制备方法,并从昆虫腿的低屈服DNA提取物中进行了优化,这些昆虫的DNA提取物是在亚最佳条件下存储的DNA保存的。将样品在野外车辆中长时间保存,然后在冰箱中的乙醇中长期存储或在室温下干燥。通过将DNA输入减少到6ng,可以处理更多具有亚最佳DNA产量的样品。我们将这种低DNA输入与市售标记酶的6倍稀释匹配,从而大大降低了库制备成本。通过直接放大后单个图书馆汇集的成本和工作量进一步抑制。我们生成了90个样本中88个中等覆盖范围(> 3倍)基因组,平均覆盖率约为10倍。与储存在乙醇中的样品相比,与储存的样品相比,DNA的DNA明显较少,但这些样品具有较高的测序统计量,其测序读数较长,内源性DNA的速率更高。此外,我们发现基于标记的库制剂的效率可以通过彻底的放大后珠子清理来提高,该珠子可以选择不针对短和大的DNA片段。通过打开使用亚最佳保存的低产量DNA提取物的机会,我们扩大了昆虫标本的整个基因组研究的范围。因此,我们期望这些结果和该协议对于昆虫学领域的一系列应用都有价值。
