观察捕获离子的振荡是最先进的量子1和基本2物理实验的必不可少的技术。裸露振荡频率的估计用于提供剩余能量的精确值3原子的估计中微子质量的关键作用。4在精确光谱实验5中还研究了振荡频率的差异,以测量基本颗粒的旋转磁因子,这与QED的测试相关,6,并在物质和反物质之间寻找不对称性。7笔陷阱中的常规方法是检测陷阱电极上离子图像电荷引起的电流。2正在探索新方法,以使用第二离子对运动敏感更高敏感性进行精确测量。8附加离子应具有有利的电子结构,以通过量子逻辑光谱法制备和读取互动的离子特性。9量子逻辑方案需要几个控制的激光脉冲来操纵辅助离子。该离子是通过激光冷却制备的,然后通过使用狭窄的过渡来解决链的运动边带来审问。过去已经探索了依赖散射光的分析的边带光谱进行运动检测的替代技术。10–14这些技术基于
因此,在SPT体验中使用光学镊子的利用在给示踪剂粒子上的访问中带来了重要的优势,并提供了受控力量以促进观察。在生物物理学中最初和主要应用[24,30,31]光学镊子和SPT越来越多地在物理学[32]和流体动力学等物理学中共同实施。[33] Franosch等,[5],例如,研究了在水中光学捕获的珠的布朗运动,并揭示了周围的水分子曾在曾经被粒子的热运动打扰的粒子上作用。,光学镊子通过提供控制力并从而促进粒子运动的表征在发现这种弱相互作用中起着至关重要的作用。与这些在生物物理学和物理学中的成功演示不同,光学镊子和SPT的结合尚未在化学和表面科学中积极出现。单独的SPT已在表面科学中广泛使用,以揭示扩散的分子级细节,[34,35]质量转运,[18]催化反应,[36]和许多其他过程[37],这些过程与经典的体积或集合测量值无法访问。[38]另一方面,光学诱捕也发现了
在嘈杂的中型量子 (NISQ) 设备中实现连接的成本是决定计算能力的重要因素。创建了一种量子比特路由算法,该算法可以在先前提出的捕获离子量子计算架构中实现高效的全局连接。该路由算法的特点是与严格下限和基于位置交换的路由算法进行比较。提出了一种误差模型,该模型可用于估计设备可实现的电路深度和量子体积作为实验参数的函数。一种基于量子体积但具有原生双量子比特门的新度量标准用于评估相对于自由、全部到全部连接的上限的连接成本。该度量标准还用于评估方格超导设备。对这两种架构进行了比较,发现对于所使用的穿梭参数,捕获离子设计与连接相关的成本要低得多。
非正交态的不可区分性是量子力学的标志之一,它既是障碍也是资源。过去几十年来,人们对量子态鉴别 [1-9] 及其应用 [10-12] 进行了大量的理论和实验研究。量子信道鉴别 [13] 是一个相关且内容更丰富的课题,它要复杂得多 [14],许多信道可以明确区分,即使类似状态无法区分 [15,16]。这些理论思想为激动人心的大类信道实验探测打开了大门,包括广泛使用的相移键控 (PSK) 和幅移键控 (ASK) 信道,它们以载波信号的相位或幅度调制方式对数据进行经典编码。这些协议具有自然的量子类似物,其中使用半经典有限长度协议 [1,17] 无法无误地区分信道。与二进制信道区分相比,区分多个量子信道需要更大的希尔伯特空间和更复杂的量子门序列,而原子系统可以很好地满足这些需求。原子系统中的长相干时间[18 – 20]、高保真度单量子比特门[19,21]以及许多长寿命状态的自然存在[22]使它们对量子协议很有吸引力。更诱人的是,原子提供了高维亚稳态流形,用于在单个原子内编码量子位或多个量子位[22 – 29],这对于区分多个信道很有用。此外,原子系统非常适合电磁传感和通信,一个例子是里德堡原子在电磁传感和通信中的巧妙应用。
本论文介绍了基于交流塞曼势能的芯片捕获原子干涉仪的开发进展。原子干涉仪是一种高精度测量工具,可以检测各种类型的力和势能。本论文介绍的捕获原子干涉仪针对的是传统弹道原子干涉仪的缺点,传统弹道原子干涉仪通常高度为米级。值得注意的是,捕获原子干涉仪具有局部原子样本、可能更长的干涉相位积累时间,并有望成为更紧凑仪器的基础。本论文介绍了基于交流塞曼势能和陷阱的捕获原子干涉仪的多个开发项目:1)在芯片上生产超冷钾,2)芯片陷阱中的势能粗糙度理论,3)微波芯片陷阱设计,4)基于激光偶极子陷阱和交流塞曼力的铷原子捕获原子干涉仪。 (1) 钾具有玻色子和费米子同位素、多个“魔”磁场,而且易于射频和微波捕获,是原子干涉仪的良好候选材料。对激光冷却和捕获系统进行了升级,以提高芯片陷阱中钾原子的温度和数量。芯片冷却导致了显著的非弹性损失,从而阻止了钾玻色-爱因斯坦凝聚体的产生。(2)芯片导线缺陷的数值模拟预测交流塞曼捕获势应该比直流塞曼捕获势平滑得多:粗糙度的抑制是由于磁极化选择规则和交流趋肤效应。(3)此外,本论文对构成交流塞曼陷阱微波原子芯片构建块的直和弯微带传输线进行了一系列研究。 (4)最后,我们构建了一个基于铷原子的拉姆齐干涉仪,通过施加自旋相关的交流塞曼力,该干涉仪可以转换为原子干涉仪:利用干涉仪测量直流和交流塞曼能量偏移,并在交流塞曼力的作用下观察条纹。
在嘈杂的中型量子 (NISQ) 设备中实现连接的成本是决定计算能力的重要因素。创建了一种量子比特路由算法,该算法可以在先前提出的捕获离子量子计算架构中实现高效的全局连接。该路由算法的特点是与严格下限和基于位置交换的路由算法进行比较。提出了一种误差模型,该模型可用于估计设备可实现的电路深度和量子体积作为实验参数的函数。一种基于量子体积但具有原生双量子比特门的新度量标准用于评估相对于自由、全部到全部连接的上限的连接成本。该度量标准还用于评估方格超导设备。对这两种架构进行了比较,发现对于所使用的穿梭参数,捕获离子设计与连接相关的成本要低得多。
I. 引言 囚禁离子是量子信息科学技术以及量子计算的主要平台 [1]。该平台具有高保真量子门 [2, 3, 4, 5, 6]、量子比特之间更广泛的连接性[7, 8]以及实现容错量子计算的潜力 [9, 10, 11]。随着量子比特和门数量的增加,系统的精确控制变得更加复杂,采取稳定和工程化的方法至关重要 [12, 13]。在量子计算的背景下,组件的可靠性减少了所需校准量并提高了数据收集的占空比[7, 14, 15]。操纵和控制囚禁离子量子比特依赖于多束激光与离子相互作用,因此可靠的光源是基于囚禁离子的量子计算机的关键部分。合适的激光系统应提供多种颜色的光,这些光不仅能够抵抗错位和机械振动,而且能够很好地稳定在感兴趣的原子跃迁频率上。任何空间或光谱不匹配都可能导致量子计算操作失败,这不仅是因为量子比特状态控制中的错误,还因为离子加载和冷却效率低下,这会增加实验的占空比。尽管构建这些光学系统的技术
我们提出了一种硬件架构和协议,用于连接光学腔内的许多局部量子处理器。该方案与捕获离子或里德堡阵列兼容,并通过在腔内进行单光子传输来分配纠缠,从而实现任意两个量子比特之间的传送门。即使对于中等质量的腔,Heralding 也能实现高保真度纠缠。对于由线性链中的捕获离子组成的处理器,具有实际参数的单个腔每隔几 μs 就能成功传输光子,将链间纠缠速率提高到现有方法的 2 个数量级以上,并消除了扩展捕获离子系统的主要瓶颈。对于一个现实场景,我们概述了如何在 200 μs 内实现 20 条离子链(总共包含 500 个量子比特)的任意对任意纠缠,保真度和速率仅受局部操作和离子读出的限制。对于由里德堡原子组成的处理器,我们的方法可以完全连接数千个中性原子。我们的架构所提供的连接性可使用多个重叠腔扩展到数万个量子比特,从而扩展嘈杂的中尺度量子时代算法和汉密尔顿模拟的能力,并实现更强大的高维纠错方案。
我们提出了一种实现拓扑离散时间量子行走的方案,该方案由单个捕获离子执行一系列自旋相关的翻转位移操作和量子硬币抛掷操作组成。结果表明,当行走发生在相干态空间中时,可以通过测量平均投影声子数来提取体拓扑不变量的信息。有趣的是,我们的离散时间量子行走所具有的特殊手性对称性简化了测量过程。此外,我们通过引入动态无序和退相干证明了此类体拓扑不变量的稳健性。我们的工作提供了一种测量离散时间量子行走中体拓扑特征的简单方法,可以在单个捕获离子系统中通过实验实现。