因此,在SPT体验中使用光学镊子的利用在给示踪剂粒子上的访问中带来了重要的优势,并提供了受控力量以促进观察。在生物物理学中最初和主要应用[24,30,31]光学镊子和SPT越来越多地在物理学[32]和流体动力学等物理学中共同实施。[33] Franosch等,[5],例如,研究了在水中光学捕获的珠的布朗运动,并揭示了周围的水分子曾在曾经被粒子的热运动打扰的粒子上作用。,光学镊子通过提供控制力并从而促进粒子运动的表征在发现这种弱相互作用中起着至关重要的作用。与这些在生物物理学和物理学中的成功演示不同,光学镊子和SPT的结合尚未在化学和表面科学中积极出现。单独的SPT已在表面科学中广泛使用,以揭示扩散的分子级细节,[34,35]质量转运,[18]催化反应,[36]和许多其他过程[37],这些过程与经典的体积或集合测量值无法访问。[38]另一方面,光学诱捕也发现了
主要关键词